ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfninc GIF version

Theorem nninfninc 7239
Description: All values beyond a zero in an sequence are zero. This is another way of stating that elements of are nonincreasing. (Contributed by Jim Kingdon, 12-Jul-2025.)
Hypotheses
Ref Expression
nninfninc.a (𝜑𝐴 ∈ ℕ)
nninfninc.x (𝜑𝑋 ∈ ω)
nninfninc.y (𝜑𝑌 ∈ ω)
nninfninc.le (𝜑𝑋𝑌)
nninfninc.z (𝜑 → (𝐴𝑋) = ∅)
Assertion
Ref Expression
nninfninc (𝜑 → (𝐴𝑌) = ∅)

Proof of Theorem nninfninc
Dummy variables 𝑓 𝑖 𝑛 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfninc.le . 2 (𝜑𝑋𝑌)
2 sseq2 3221 . . . 4 (𝑛 = 𝑌 → (𝑋𝑛𝑋𝑌))
3 fveqeq2 5597 . . . 4 (𝑛 = 𝑌 → ((𝐴𝑛) = ∅ ↔ (𝐴𝑌) = ∅))
42, 3imbi12d 234 . . 3 (𝑛 = 𝑌 → ((𝑋𝑛 → (𝐴𝑛) = ∅) ↔ (𝑋𝑌 → (𝐴𝑌) = ∅)))
5 sseq2 3221 . . . . . . . . 9 (𝑤 = ∅ → (𝑋𝑤𝑋 ⊆ ∅))
65anbi2d 464 . . . . . . . 8 (𝑤 = ∅ → ((𝜑𝑋𝑤) ↔ (𝜑𝑋 ⊆ ∅)))
7 fveqeq2 5597 . . . . . . . 8 (𝑤 = ∅ → ((𝐴𝑤) = ∅ ↔ (𝐴‘∅) = ∅))
86, 7imbi12d 234 . . . . . . 7 (𝑤 = ∅ → (((𝜑𝑋𝑤) → (𝐴𝑤) = ∅) ↔ ((𝜑𝑋 ⊆ ∅) → (𝐴‘∅) = ∅)))
9 sseq2 3221 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑋𝑤𝑋𝑘))
109anbi2d 464 . . . . . . . 8 (𝑤 = 𝑘 → ((𝜑𝑋𝑤) ↔ (𝜑𝑋𝑘)))
11 fveqeq2 5597 . . . . . . . 8 (𝑤 = 𝑘 → ((𝐴𝑤) = ∅ ↔ (𝐴𝑘) = ∅))
1210, 11imbi12d 234 . . . . . . 7 (𝑤 = 𝑘 → (((𝜑𝑋𝑤) → (𝐴𝑤) = ∅) ↔ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)))
13 sseq2 3221 . . . . . . . . 9 (𝑤 = suc 𝑘 → (𝑋𝑤𝑋 ⊆ suc 𝑘))
1413anbi2d 464 . . . . . . . 8 (𝑤 = suc 𝑘 → ((𝜑𝑋𝑤) ↔ (𝜑𝑋 ⊆ suc 𝑘)))
15 fveqeq2 5597 . . . . . . . 8 (𝑤 = suc 𝑘 → ((𝐴𝑤) = ∅ ↔ (𝐴‘suc 𝑘) = ∅))
1614, 15imbi12d 234 . . . . . . 7 (𝑤 = suc 𝑘 → (((𝜑𝑋𝑤) → (𝐴𝑤) = ∅) ↔ ((𝜑𝑋 ⊆ suc 𝑘) → (𝐴‘suc 𝑘) = ∅)))
17 sseq2 3221 . . . . . . . . 9 (𝑤 = 𝑛 → (𝑋𝑤𝑋𝑛))
1817anbi2d 464 . . . . . . . 8 (𝑤 = 𝑛 → ((𝜑𝑋𝑤) ↔ (𝜑𝑋𝑛)))
19 fveqeq2 5597 . . . . . . . 8 (𝑤 = 𝑛 → ((𝐴𝑤) = ∅ ↔ (𝐴𝑛) = ∅))
2018, 19imbi12d 234 . . . . . . 7 (𝑤 = 𝑛 → (((𝜑𝑋𝑤) → (𝐴𝑤) = ∅) ↔ ((𝜑𝑋𝑛) → (𝐴𝑛) = ∅)))
21 ss0 3505 . . . . . . . . . 10 (𝑋 ⊆ ∅ → 𝑋 = ∅)
2221adantl 277 . . . . . . . . 9 ((𝜑𝑋 ⊆ ∅) → 𝑋 = ∅)
2322fveq2d 5592 . . . . . . . 8 ((𝜑𝑋 ⊆ ∅) → (𝐴𝑋) = (𝐴‘∅))
24 nninfninc.z . . . . . . . . 9 (𝜑 → (𝐴𝑋) = ∅)
2524adantr 276 . . . . . . . 8 ((𝜑𝑋 ⊆ ∅) → (𝐴𝑋) = ∅)
2623, 25eqtr3d 2241 . . . . . . 7 ((𝜑𝑋 ⊆ ∅) → (𝐴‘∅) = ∅)
27 suceq 4456 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → suc 𝑖 = suc 𝑘)
2827fveq2d 5592 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝐴‘suc 𝑖) = (𝐴‘suc 𝑘))
29 fveq2 5588 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝐴𝑖) = (𝐴𝑘))
3028, 29sseq12d 3228 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝐴‘suc 𝑖) ⊆ (𝐴𝑖) ↔ (𝐴‘suc 𝑘) ⊆ (𝐴𝑘)))
31 simplrl 535 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝜑)
32 nninfninc.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℕ)
33 fveq1 5587 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖))
34 fveq1 5587 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝐴 → (𝑓𝑖) = (𝐴𝑖))
3533, 34sseq12d 3228 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
3635ralbidv 2507 . . . . . . . . . . . . . . . 16 (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
37 df-nninf 7236 . . . . . . . . . . . . . . . 16 = {𝑓 ∈ (2o𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓𝑖)}
3836, 37elrab2 2936 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ ↔ (𝐴 ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
3932, 38sylib 122 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 ∈ (2o𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖)))
4039simprd 114 . . . . . . . . . . . . 13 (𝜑 → ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖))
4131, 40syl 14 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴𝑖))
42 simpll 527 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → 𝑘 ∈ ω)
4342adantr 276 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑘 ∈ ω)
4430, 41, 43rspcdva 2886 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴‘suc 𝑘) ⊆ (𝐴𝑘))
45 simpr 110 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑋 ∈ suc 𝑘)
46 nninfninc.x . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ω)
4746ad2antrl 490 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → 𝑋 ∈ ω)
4847adantr 276 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑋 ∈ ω)
49 nnsssuc 6600 . . . . . . . . . . . . . 14 ((𝑋 ∈ ω ∧ 𝑘 ∈ ω) → (𝑋𝑘𝑋 ∈ suc 𝑘))
5048, 43, 49syl2anc 411 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝑋𝑘𝑋 ∈ suc 𝑘))
5145, 50mpbird 167 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑋𝑘)
52 simpllr 534 . . . . . . . . . . . 12 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅))
5331, 51, 52mp2and 433 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴𝑘) = ∅)
5444, 53sseqtrd 3235 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴‘suc 𝑘) ⊆ ∅)
55 ss0 3505 . . . . . . . . . 10 ((𝐴‘suc 𝑘) ⊆ ∅ → (𝐴‘suc 𝑘) = ∅)
5654, 55syl 14 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴‘suc 𝑘) = ∅)
57 simpr 110 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → 𝑋 = suc 𝑘)
5857fveq2d 5592 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → (𝐴𝑋) = (𝐴‘suc 𝑘))
59 simplrl 535 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → 𝜑)
6059, 24syl 14 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → (𝐴𝑋) = ∅)
6158, 60eqtr3d 2241 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → (𝐴‘suc 𝑘) = ∅)
62 simprr 531 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → 𝑋 ⊆ suc 𝑘)
63 peano2 4650 . . . . . . . . . . . . 13 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
6442, 63syl 14 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → suc 𝑘 ∈ ω)
65 nnsssuc 6600 . . . . . . . . . . . 12 ((𝑋 ∈ ω ∧ suc 𝑘 ∈ ω) → (𝑋 ⊆ suc 𝑘𝑋 ∈ suc suc 𝑘))
6647, 64, 65syl2anc 411 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → (𝑋 ⊆ suc 𝑘𝑋 ∈ suc suc 𝑘))
6762, 66mpbid 147 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → 𝑋 ∈ suc suc 𝑘)
68 elsuci 4457 . . . . . . . . . 10 (𝑋 ∈ suc suc 𝑘 → (𝑋 ∈ suc 𝑘𝑋 = suc 𝑘))
6967, 68syl 14 . . . . . . . . 9 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → (𝑋 ∈ suc 𝑘𝑋 = suc 𝑘))
7056, 61, 69mpjaodan 800 . . . . . . . 8 (((𝑘 ∈ ω ∧ ((𝜑𝑋𝑘) → (𝐴𝑘) = ∅)) ∧ (𝜑𝑋 ⊆ suc 𝑘)) → (𝐴‘suc 𝑘) = ∅)
7170exp31 364 . . . . . . 7 (𝑘 ∈ ω → (((𝜑𝑋𝑘) → (𝐴𝑘) = ∅) → ((𝜑𝑋 ⊆ suc 𝑘) → (𝐴‘suc 𝑘) = ∅)))
728, 12, 16, 20, 26, 71finds 4655 . . . . . 6 (𝑛 ∈ ω → ((𝜑𝑋𝑛) → (𝐴𝑛) = ∅))
7372com12 30 . . . . 5 ((𝜑𝑋𝑛) → (𝑛 ∈ ω → (𝐴𝑛) = ∅))
7473impancom 260 . . . 4 ((𝜑𝑛 ∈ ω) → (𝑋𝑛 → (𝐴𝑛) = ∅))
7574ralrimiva 2580 . . 3 (𝜑 → ∀𝑛 ∈ ω (𝑋𝑛 → (𝐴𝑛) = ∅))
76 nninfninc.y . . 3 (𝜑𝑌 ∈ ω)
774, 75, 76rspcdva 2886 . 2 (𝜑 → (𝑋𝑌 → (𝐴𝑌) = ∅))
781, 77mpd 13 1 (𝜑 → (𝐴𝑌) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wral 2485  wss 3170  c0 3464  suc csuc 4419  ωcom 4645  cfv 5279  (class class class)co 5956  2oc2o 6508  𝑚 cmap 6747  xnninf 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-tr 4150  df-iord 4420  df-on 4422  df-suc 4425  df-iom 4646  df-iota 5240  df-fv 5287  df-nninf 7236
This theorem is referenced by:  nninfctlemfo  12431  nnnninfex  16094
  Copyright terms: Public domain W3C validator