Step | Hyp | Ref
| Expression |
1 | | nninfninc.le |
. 2
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
2 | | sseq2 3203 |
. . . 4
⊢ (𝑛 = 𝑌 → (𝑋 ⊆ 𝑛 ↔ 𝑋 ⊆ 𝑌)) |
3 | | fveqeq2 5563 |
. . . 4
⊢ (𝑛 = 𝑌 → ((𝐴‘𝑛) = ∅ ↔ (𝐴‘𝑌) = ∅)) |
4 | 2, 3 | imbi12d 234 |
. . 3
⊢ (𝑛 = 𝑌 → ((𝑋 ⊆ 𝑛 → (𝐴‘𝑛) = ∅) ↔ (𝑋 ⊆ 𝑌 → (𝐴‘𝑌) = ∅))) |
5 | | sseq2 3203 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑋 ⊆ 𝑤 ↔ 𝑋 ⊆ ∅)) |
6 | 5 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝜑 ∧ 𝑋 ⊆ 𝑤) ↔ (𝜑 ∧ 𝑋 ⊆ ∅))) |
7 | | fveqeq2 5563 |
. . . . . . . 8
⊢ (𝑤 = ∅ → ((𝐴‘𝑤) = ∅ ↔ (𝐴‘∅) = ∅)) |
8 | 6, 7 | imbi12d 234 |
. . . . . . 7
⊢ (𝑤 = ∅ → (((𝜑 ∧ 𝑋 ⊆ 𝑤) → (𝐴‘𝑤) = ∅) ↔ ((𝜑 ∧ 𝑋 ⊆ ∅) → (𝐴‘∅) =
∅))) |
9 | | sseq2 3203 |
. . . . . . . . 9
⊢ (𝑤 = 𝑘 → (𝑋 ⊆ 𝑤 ↔ 𝑋 ⊆ 𝑘)) |
10 | 9 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → ((𝜑 ∧ 𝑋 ⊆ 𝑤) ↔ (𝜑 ∧ 𝑋 ⊆ 𝑘))) |
11 | | fveqeq2 5563 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → ((𝐴‘𝑤) = ∅ ↔ (𝐴‘𝑘) = ∅)) |
12 | 10, 11 | imbi12d 234 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (((𝜑 ∧ 𝑋 ⊆ 𝑤) → (𝐴‘𝑤) = ∅) ↔ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅))) |
13 | | sseq2 3203 |
. . . . . . . . 9
⊢ (𝑤 = suc 𝑘 → (𝑋 ⊆ 𝑤 ↔ 𝑋 ⊆ suc 𝑘)) |
14 | 13 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑘 → ((𝜑 ∧ 𝑋 ⊆ 𝑤) ↔ (𝜑 ∧ 𝑋 ⊆ suc 𝑘))) |
15 | | fveqeq2 5563 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑘 → ((𝐴‘𝑤) = ∅ ↔ (𝐴‘suc 𝑘) = ∅)) |
16 | 14, 15 | imbi12d 234 |
. . . . . . 7
⊢ (𝑤 = suc 𝑘 → (((𝜑 ∧ 𝑋 ⊆ 𝑤) → (𝐴‘𝑤) = ∅) ↔ ((𝜑 ∧ 𝑋 ⊆ suc 𝑘) → (𝐴‘suc 𝑘) = ∅))) |
17 | | sseq2 3203 |
. . . . . . . . 9
⊢ (𝑤 = 𝑛 → (𝑋 ⊆ 𝑤 ↔ 𝑋 ⊆ 𝑛)) |
18 | 17 | anbi2d 464 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → ((𝜑 ∧ 𝑋 ⊆ 𝑤) ↔ (𝜑 ∧ 𝑋 ⊆ 𝑛))) |
19 | | fveqeq2 5563 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → ((𝐴‘𝑤) = ∅ ↔ (𝐴‘𝑛) = ∅)) |
20 | 18, 19 | imbi12d 234 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → (((𝜑 ∧ 𝑋 ⊆ 𝑤) → (𝐴‘𝑤) = ∅) ↔ ((𝜑 ∧ 𝑋 ⊆ 𝑛) → (𝐴‘𝑛) = ∅))) |
21 | | ss0 3487 |
. . . . . . . . . 10
⊢ (𝑋 ⊆ ∅ → 𝑋 = ∅) |
22 | 21 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ⊆ ∅) → 𝑋 = ∅) |
23 | 22 | fveq2d 5558 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ⊆ ∅) → (𝐴‘𝑋) = (𝐴‘∅)) |
24 | | nninfninc.z |
. . . . . . . . 9
⊢ (𝜑 → (𝐴‘𝑋) = ∅) |
25 | 24 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ⊆ ∅) → (𝐴‘𝑋) = ∅) |
26 | 23, 25 | eqtr3d 2228 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ⊆ ∅) → (𝐴‘∅) = ∅) |
27 | | suceq 4433 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → suc 𝑖 = suc 𝑘) |
28 | 27 | fveq2d 5558 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝐴‘suc 𝑖) = (𝐴‘suc 𝑘)) |
29 | | fveq2 5554 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝐴‘𝑖) = (𝐴‘𝑘)) |
30 | 28, 29 | sseq12d 3210 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → ((𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖) ↔ (𝐴‘suc 𝑘) ⊆ (𝐴‘𝑘))) |
31 | | simplrl 535 |
. . . . . . . . . . . . 13
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝜑) |
32 | | nninfninc.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℕ∞) |
33 | | fveq1 5553 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝐴 → (𝑓‘suc 𝑖) = (𝐴‘suc 𝑖)) |
34 | | fveq1 5553 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝐴 → (𝑓‘𝑖) = (𝐴‘𝑖)) |
35 | 33, 34 | sseq12d 3210 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝐴 → ((𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
36 | 35 | ralbidv 2494 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝐴 → (∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖) ↔ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
37 | | df-nninf 7179 |
. . . . . . . . . . . . . . . 16
⊢
ℕ∞ = {𝑓 ∈ (2o
↑𝑚 ω) ∣ ∀𝑖 ∈ ω (𝑓‘suc 𝑖) ⊆ (𝑓‘𝑖)} |
38 | 36, 37 | elrab2 2919 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
ℕ∞ ↔ (𝐴 ∈ (2o
↑𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
39 | 32, 38 | sylib 122 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 ∈ (2o
↑𝑚 ω) ∧ ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖))) |
40 | 39 | simprd 114 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖)) |
41 | 31, 40 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → ∀𝑖 ∈ ω (𝐴‘suc 𝑖) ⊆ (𝐴‘𝑖)) |
42 | | simpll 527 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → 𝑘 ∈ ω) |
43 | 42 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑘 ∈ ω) |
44 | 30, 41, 43 | rspcdva 2869 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴‘suc 𝑘) ⊆ (𝐴‘𝑘)) |
45 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑋 ∈ suc 𝑘) |
46 | | nninfninc.x |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈ ω) |
47 | 46 | ad2antrl 490 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → 𝑋 ∈ ω) |
48 | 47 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑋 ∈ ω) |
49 | | nnsssuc 6555 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ω ∧ 𝑘 ∈ ω) → (𝑋 ⊆ 𝑘 ↔ 𝑋 ∈ suc 𝑘)) |
50 | 48, 43, 49 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝑋 ⊆ 𝑘 ↔ 𝑋 ∈ suc 𝑘)) |
51 | 45, 50 | mpbird 167 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → 𝑋 ⊆ 𝑘) |
52 | | simpllr 534 |
. . . . . . . . . . . 12
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) |
53 | 31, 51, 52 | mp2and 433 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴‘𝑘) = ∅) |
54 | 44, 53 | sseqtrd 3217 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴‘suc 𝑘) ⊆ ∅) |
55 | | ss0 3487 |
. . . . . . . . . 10
⊢ ((𝐴‘suc 𝑘) ⊆ ∅ → (𝐴‘suc 𝑘) = ∅) |
56 | 54, 55 | syl 14 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 ∈ suc 𝑘) → (𝐴‘suc 𝑘) = ∅) |
57 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → 𝑋 = suc 𝑘) |
58 | 57 | fveq2d 5558 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → (𝐴‘𝑋) = (𝐴‘suc 𝑘)) |
59 | | simplrl 535 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → 𝜑) |
60 | 59, 24 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → (𝐴‘𝑋) = ∅) |
61 | 58, 60 | eqtr3d 2228 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) ∧ 𝑋 = suc 𝑘) → (𝐴‘suc 𝑘) = ∅) |
62 | | simprr 531 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → 𝑋 ⊆ suc 𝑘) |
63 | | peano2 4627 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
64 | 42, 63 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → suc 𝑘 ∈ ω) |
65 | | nnsssuc 6555 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ω ∧ suc 𝑘 ∈ ω) → (𝑋 ⊆ suc 𝑘 ↔ 𝑋 ∈ suc suc 𝑘)) |
66 | 47, 64, 65 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → (𝑋 ⊆ suc 𝑘 ↔ 𝑋 ∈ suc suc 𝑘)) |
67 | 62, 66 | mpbid 147 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → 𝑋 ∈ suc suc 𝑘) |
68 | | elsuci 4434 |
. . . . . . . . . 10
⊢ (𝑋 ∈ suc suc 𝑘 → (𝑋 ∈ suc 𝑘 ∨ 𝑋 = suc 𝑘)) |
69 | 67, 68 | syl 14 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → (𝑋 ∈ suc 𝑘 ∨ 𝑋 = suc 𝑘)) |
70 | 56, 61, 69 | mpjaodan 799 |
. . . . . . . 8
⊢ (((𝑘 ∈ ω ∧ ((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅)) ∧ (𝜑 ∧ 𝑋 ⊆ suc 𝑘)) → (𝐴‘suc 𝑘) = ∅) |
71 | 70 | exp31 364 |
. . . . . . 7
⊢ (𝑘 ∈ ω → (((𝜑 ∧ 𝑋 ⊆ 𝑘) → (𝐴‘𝑘) = ∅) → ((𝜑 ∧ 𝑋 ⊆ suc 𝑘) → (𝐴‘suc 𝑘) = ∅))) |
72 | 8, 12, 16, 20, 26, 71 | finds 4632 |
. . . . . 6
⊢ (𝑛 ∈ ω → ((𝜑 ∧ 𝑋 ⊆ 𝑛) → (𝐴‘𝑛) = ∅)) |
73 | 72 | com12 30 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ⊆ 𝑛) → (𝑛 ∈ ω → (𝐴‘𝑛) = ∅)) |
74 | 73 | impancom 260 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ω) → (𝑋 ⊆ 𝑛 → (𝐴‘𝑛) = ∅)) |
75 | 74 | ralrimiva 2567 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ω (𝑋 ⊆ 𝑛 → (𝐴‘𝑛) = ∅)) |
76 | | nninfninc.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ ω) |
77 | 4, 75, 76 | rspcdva 2869 |
. 2
⊢ (𝜑 → (𝑋 ⊆ 𝑌 → (𝐴‘𝑌) = ∅)) |
78 | 1, 77 | mpd 13 |
1
⊢ (𝜑 → (𝐴‘𝑌) = ∅) |