| Step | Hyp | Ref
| Expression |
| 1 | | nnnninfex.n |
. 2
   |
| 2 | | nnnninfex.p |
. . 3

ℕ∞ |
| 3 | | nnnninfex.0 |
. . 3
       |
| 4 | 2, 3 | jca 306 |
. 2
 
ℕ∞        |
| 5 | | fveqeq2 5570 |
. . . . 5

    
       |
| 6 | 5 | anbi2d 464 |
. . . 4

 
ℕ∞      
ℕ∞         |
| 7 | 6 | imbi1d 231 |
. . 3

  
ℕ∞      
          ℕ∞     
            |
| 8 | | fveqeq2 5570 |
. . . . 5
     
       |
| 9 | 8 | anbi2d 464 |
. . . 4
  
ℕ∞      
ℕ∞         |
| 10 | 9 | imbi1d 231 |
. . 3
    ℕ∞                 ℕ∞      
           |
| 11 | | fveqeq2 5570 |
. . . . 5
             |
| 12 | 11 | anbi2d 464 |
. . . 4
   ℕ∞     
 ℕ∞         |
| 13 | 12 | imbi1d 231 |
. . 3
    ℕ∞      
          ℕ∞      
           |
| 14 | | fveqeq2 5570 |
. . . . 5
     
       |
| 15 | 14 | anbi2d 464 |
. . . 4
  
ℕ∞      
ℕ∞         |
| 16 | 15 | imbi1d 231 |
. . 3
    ℕ∞                 ℕ∞      
           |
| 17 | | peano1 4631 |
. . . 4
 |
| 18 | | simpll 527 |
. . . . . . . 8
  
ℕ∞     

ℕ∞ |
| 19 | 17 | a1i 9 |
. . . . . . . 8
  
ℕ∞     

  |
| 20 | | simpr 110 |
. . . . . . . 8
  
ℕ∞     
   |
| 21 | | 0ss 3490 |
. . . . . . . . 9
 |
| 22 | 21 | a1i 9 |
. . . . . . . 8
  
ℕ∞     
   |
| 23 | | simplr 528 |
. . . . . . . 8
  
ℕ∞     
       |
| 24 | 18, 19, 20, 22, 23 | nninfninc 7198 |
. . . . . . 7
  
ℕ∞     
       |
| 25 | | noel 3455 |
. . . . . . . . . 10
 |
| 26 | 25 | iffalsei 3571 |
. . . . . . . . 9
      |
| 27 | 26 | mpteq2i 4121 |
. . . . . . . 8
          |
| 28 | | eqidd 2197 |
. . . . . . . 8
   |
| 29 | 27, 28, 20, 19 | fvmptd3 5658 |
. . . . . . 7
  
ℕ∞     
              |
| 30 | 24, 29 | eqtr4d 2232 |
. . . . . 6
  
ℕ∞     
                  |
| 31 | 30 | ralrimiva 2570 |
. . . . 5
 
ℕ∞      
                 |
| 32 | | nninff 7197 |
. . . . . . . 8
 ℕ∞       |
| 33 | 32 | ffnd 5411 |
. . . . . . 7
 ℕ∞   |
| 34 | 33 | adantr 276 |
. . . . . 6
 
ℕ∞     
  |
| 35 | | 1oex 6491 |
. . . . . . . 8
 |
| 36 | | 0ex 4161 |
. . . . . . . 8
 |
| 37 | 35, 36 | ifex 4522 |
. . . . . . 7
      |
| 38 | | eqid 2196 |
. . . . . . 7
               |
| 39 | 37, 38 | fnmpti 5389 |
. . . . . 6
        |
| 40 | | eqfnfv 5662 |
. . . . . 6
                  
                  |
| 41 | 34, 39, 40 | sylancl 413 |
. . . . 5
 
ℕ∞              
                  |
| 42 | 31, 41 | mpbird 167 |
. . . 4
 
ℕ∞     
         |
| 43 | | eleq2 2260 |
. . . . . . 7


   |
| 44 | 43 | ifbid 3583 |
. . . . . 6

            |
| 45 | 44 | mpteq2dv 4125 |
. . . . 5

                |
| 46 | 45 | rspceeqv 2886 |
. . . 4
 
        
         |
| 47 | 17, 42, 46 | sylancr 414 |
. . 3
 
ℕ∞      
         |
| 48 | | simpr 110 |
. . . . . . . 8
     ℕ∞      
           
             |
| 49 | | simpllr 534 |
. . . . . . . 8
     ℕ∞      
           
                       |
| 50 | 48, 49 | mpd 13 |
. . . . . . 7
     ℕ∞      
           
                 |
| 51 | | simpl 109 |
. . . . . . . . . 10
 
ℕ∞
  |
| 52 | 51 | ad3antrrr 492 |
. . . . . . . . 9
     ℕ∞      
           
         |
| 53 | | peano2 4632 |
. . . . . . . . 9

  |
| 54 | 52, 53 | syl 14 |
. . . . . . . 8
     ℕ∞      
           
      
  |
| 55 | | simpllr 534 |
. . . . . . . . . 10
   
ℕ∞          
ℕ∞ |
| 56 | 53 | ad3antrrr 492 |
. . . . . . . . . 10
   
ℕ∞          
  |
| 57 | | nnord 4649 |
. . . . . . . . . . . . . . 15
   |
| 58 | | ordtr 4414 |
. . . . . . . . . . . . . . 15

  |
| 59 | 57, 58 | syl 14 |
. . . . . . . . . . . . . 14
   |
| 60 | | unisucg 4450 |
. . . . . . . . . . . . . 14
 
    |
| 61 | 59, 60 | mpbid 147 |
. . . . . . . . . . . . 13
 
  |
| 62 | 61 | fveq2d 5565 |
. . . . . . . . . . . 12
            |
| 63 | 62 | ad3antrrr 492 |
. . . . . . . . . . 11
   
ℕ∞                      |
| 64 | | simpr 110 |
. . . . . . . . . . 11
   
ℕ∞                 |
| 65 | 63, 64 | eqtrd 2229 |
. . . . . . . . . 10
   
ℕ∞                  |
| 66 | | simplr 528 |
. . . . . . . . . 10
   
ℕ∞                 |
| 67 | 55, 56, 65, 66 | nnnninfeq2 7204 |
. . . . . . . . 9
   
ℕ∞          
         |
| 68 | 67 | adantllr 481 |
. . . . . . . 8
     ℕ∞      
           
                |
| 69 | | eleq2 2260 |
. . . . . . . . . . 11
     |
| 70 | 69 | ifbid 3583 |
. . . . . . . . . 10
             |
| 71 | 70 | mpteq2dv 4125 |
. . . . . . . . 9
                 |
| 72 | 71 | rspceeqv 2886 |
. . . . . . . 8
         
          |
| 73 | 54, 68, 72 | syl2anc 411 |
. . . . . . 7
     ℕ∞      
           
                 |
| 74 | 32 | adantl 277 |
. . . . . . . . . . 11
 
ℕ∞
      |
| 75 | 74, 51 | ffvelcdmd 5701 |
. . . . . . . . . 10
 
ℕ∞
      |
| 76 | | df2o3 6497 |
. . . . . . . . . 10
    |
| 77 | 75, 76 | eleqtrdi 2289 |
. . . . . . . . 9
 
ℕ∞
         |
| 78 | | elpri 3646 |
. . . . . . . . 9
                    |
| 79 | 77, 78 | syl 14 |
. . . . . . . 8
 
ℕ∞
            |
| 80 | 79 | ad2antrr 488 |
. . . . . . 7
   
ℕ∞      
           
              |
| 81 | 50, 73, 80 | mpjaodan 799 |
. . . . . 6
   
ℕ∞      
           
            |
| 82 | 81 | exp41 370 |
. . . . 5
 
ℕ∞      
        
    
             |
| 83 | 82 | a2d 26 |
. . . 4
  
ℕ∞      
        
 ℕ∞      
            |
| 84 | | impexp 263 |
. . . 4
  
ℕ∞      
        
ℕ∞      
           |
| 85 | | impexp 263 |
. . . 4
  
ℕ∞      
        
ℕ∞    

            |
| 86 | 83, 84, 85 | 3imtr4g 205 |
. . 3
    ℕ∞              
 
ℕ∞      
           |
| 87 | 7, 10, 13, 16, 47, 86 | finds 4637 |
. 2
  
ℕ∞      
          |
| 88 | 1, 4, 87 | sylc 62 |
1
 
         |