Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numadd | GIF version |
Description: Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numadd.8 | ⊢ (𝐴 + 𝐶) = 𝐸 |
numadd.9 | ⊢ (𝐵 + 𝐷) = 𝐹 |
Ref | Expression |
---|---|
numadd | ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
2 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
3 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
4 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 9355 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2243 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
7 | 6 | nn0cni 9147 | . . . 4 ⊢ 𝑀 ∈ ℂ |
8 | 7 | mulid1i 7922 | . . 3 ⊢ (𝑀 · 1) = 𝑀 |
9 | 8 | oveq1i 5863 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁) |
10 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
11 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
12 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
13 | 1nn0 9151 | . . 3 ⊢ 1 ∈ ℕ0 | |
14 | 3 | nn0cni 9147 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
15 | 14 | mulid1i 7922 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
16 | 15 | oveq1i 5863 | . . . 4 ⊢ ((𝐴 · 1) + 𝐶) = (𝐴 + 𝐶) |
17 | numadd.8 | . . . 4 ⊢ (𝐴 + 𝐶) = 𝐸 | |
18 | 16, 17 | eqtri 2191 | . . 3 ⊢ ((𝐴 · 1) + 𝐶) = 𝐸 |
19 | 4 | nn0cni 9147 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
20 | 19 | mulid1i 7922 | . . . . 5 ⊢ (𝐵 · 1) = 𝐵 |
21 | 20 | oveq1i 5863 | . . . 4 ⊢ ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷) |
22 | numadd.9 | . . . 4 ⊢ (𝐵 + 𝐷) = 𝐹 | |
23 | 21, 22 | eqtri 2191 | . . 3 ⊢ ((𝐵 · 1) + 𝐷) = 𝐹 |
24 | 2, 3, 4, 10, 11, 1, 12, 13, 18, 23 | numma 9386 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
25 | 9, 24 | eqtr3i 2193 | 1 ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 1c1 7775 + caddc 7777 · cmul 7779 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-inn 8879 df-n0 9136 |
This theorem is referenced by: decadd 9396 |
Copyright terms: Public domain | W3C validator |