![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numadd | GIF version |
Description: Add two decimal integers ๐ and ๐ (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | โข ๐ โ โ0 |
numma.2 | โข ๐ด โ โ0 |
numma.3 | โข ๐ต โ โ0 |
numma.4 | โข ๐ถ โ โ0 |
numma.5 | โข ๐ท โ โ0 |
numma.6 | โข ๐ = ((๐ ยท ๐ด) + ๐ต) |
numma.7 | โข ๐ = ((๐ ยท ๐ถ) + ๐ท) |
numadd.8 | โข (๐ด + ๐ถ) = ๐ธ |
numadd.9 | โข (๐ต + ๐ท) = ๐น |
Ref | Expression |
---|---|
numadd | โข (๐ + ๐) = ((๐ ยท ๐ธ) + ๐น) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . . . 6 โข ๐ = ((๐ ยท ๐ด) + ๐ต) | |
2 | numma.1 | . . . . . . 7 โข ๐ โ โ0 | |
3 | numma.2 | . . . . . . 7 โข ๐ด โ โ0 | |
4 | numma.3 | . . . . . . 7 โข ๐ต โ โ0 | |
5 | 2, 3, 4 | numcl 9398 | . . . . . 6 โข ((๐ ยท ๐ด) + ๐ต) โ โ0 |
6 | 1, 5 | eqeltri 2250 | . . . . 5 โข ๐ โ โ0 |
7 | 6 | nn0cni 9190 | . . . 4 โข ๐ โ โ |
8 | 7 | mulid1i 7961 | . . 3 โข (๐ ยท 1) = ๐ |
9 | 8 | oveq1i 5887 | . 2 โข ((๐ ยท 1) + ๐) = (๐ + ๐) |
10 | numma.4 | . . 3 โข ๐ถ โ โ0 | |
11 | numma.5 | . . 3 โข ๐ท โ โ0 | |
12 | numma.7 | . . 3 โข ๐ = ((๐ ยท ๐ถ) + ๐ท) | |
13 | 1nn0 9194 | . . 3 โข 1 โ โ0 | |
14 | 3 | nn0cni 9190 | . . . . . 6 โข ๐ด โ โ |
15 | 14 | mulid1i 7961 | . . . . 5 โข (๐ด ยท 1) = ๐ด |
16 | 15 | oveq1i 5887 | . . . 4 โข ((๐ด ยท 1) + ๐ถ) = (๐ด + ๐ถ) |
17 | numadd.8 | . . . 4 โข (๐ด + ๐ถ) = ๐ธ | |
18 | 16, 17 | eqtri 2198 | . . 3 โข ((๐ด ยท 1) + ๐ถ) = ๐ธ |
19 | 4 | nn0cni 9190 | . . . . . 6 โข ๐ต โ โ |
20 | 19 | mulid1i 7961 | . . . . 5 โข (๐ต ยท 1) = ๐ต |
21 | 20 | oveq1i 5887 | . . . 4 โข ((๐ต ยท 1) + ๐ท) = (๐ต + ๐ท) |
22 | numadd.9 | . . . 4 โข (๐ต + ๐ท) = ๐น | |
23 | 21, 22 | eqtri 2198 | . . 3 โข ((๐ต ยท 1) + ๐ท) = ๐น |
24 | 2, 3, 4, 10, 11, 1, 12, 13, 18, 23 | numma 9429 | . 2 โข ((๐ ยท 1) + ๐) = ((๐ ยท ๐ธ) + ๐น) |
25 | 9, 24 | eqtr3i 2200 | 1 โข (๐ + ๐) = ((๐ ยท ๐ธ) + ๐น) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 โ wcel 2148 (class class class)co 5877 1c1 7814 + caddc 7816 ยท cmul 7818 โ0cn0 9178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 df-inn 8922 df-n0 9179 |
This theorem is referenced by: decadd 9439 |
Copyright terms: Public domain | W3C validator |