ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetsym GIF version

Theorem psmetsym 13123
Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetsym ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))

Proof of Theorem psmetsym
StepHypRef Expression
1 simp1 992 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 simp3 994 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
3 simp2 993 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
4 psmettri2 13122 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
51, 2, 3, 2, 4syl13anc 1235 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
6 psmet0 13121 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
763adant2 1011 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
87oveq2d 5869 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = ((𝐵𝐷𝐴) +𝑒 0))
9 psmetcl 13120 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
10 xaddid1 9819 . . . . . 6 ((𝐵𝐷𝐴) ∈ ℝ* → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
119, 10syl 14 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
12113com23 1204 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
138, 12eqtrd 2203 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = (𝐵𝐷𝐴))
145, 13breqtrd 4015 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴))
15 psmettri2 13122 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
161, 3, 2, 3, 15syl13anc 1235 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
17 psmet0 13121 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
18173adant3 1012 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = 0)
1918oveq2d 5869 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
20 psmetcl 13120 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
21 xaddid1 9819 . . . . 5 ((𝐴𝐷𝐵) ∈ ℝ* → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2220, 21syl 14 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2319, 22eqtrd 2203 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = (𝐴𝐷𝐵))
2416, 23breqtrd 4015 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))
2593com23 1204 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
26 xrletri3 9761 . . 3 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐵𝐷𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2720, 25, 26syl2anc 409 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2814, 24, 27mpbir2and 939 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  0cc0 7774  *cxr 7953  cle 7955   +𝑒 cxad 9727  PsMetcpsmet 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-0id 7882  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-xadd 9730  df-psmet 12781
This theorem is referenced by:  psmettri  13124  distspace  13129  elbl3ps  13188  blssps  13221
  Copyright terms: Public domain W3C validator