ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetsym GIF version

Theorem psmetsym 14845
Description: The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
psmetsym ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))

Proof of Theorem psmetsym
StepHypRef Expression
1 simp1 1000 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐷 ∈ (PsMet‘𝑋))
2 simp3 1002 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
3 simp2 1001 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
4 psmettri2 14844 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐵𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
51, 2, 3, 2, 4syl13anc 1252 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)))
6 psmet0 14843 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋) → (𝐵𝐷𝐵) = 0)
763adant2 1019 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐵) = 0)
87oveq2d 5967 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = ((𝐵𝐷𝐴) +𝑒 0))
9 psmetcl 14842 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
10 xaddid1 9991 . . . . . 6 ((𝐵𝐷𝐴) ∈ ℝ* → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
119, 10syl 14 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
12113com23 1212 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 0) = (𝐵𝐷𝐴))
138, 12eqtrd 2239 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐷𝐴) +𝑒 (𝐵𝐷𝐵)) = (𝐵𝐷𝐴))
145, 13breqtrd 4073 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴))
15 psmettri2 14844 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
161, 3, 2, 3, 15syl13anc 1252 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)))
17 psmet0 14843 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
18173adant3 1020 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = 0)
1918oveq2d 5967 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
20 psmetcl 14842 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
21 xaddid1 9991 . . . . 5 ((𝐴𝐷𝐵) ∈ ℝ* → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2220, 21syl 14 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
2319, 22eqtrd 2239 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) +𝑒 (𝐴𝐷𝐴)) = (𝐴𝐷𝐵))
2416, 23breqtrd 4073 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))
2593com23 1212 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐷𝐴) ∈ ℝ*)
26 xrletri3 9933 . . 3 (((𝐴𝐷𝐵) ∈ ℝ* ∧ (𝐵𝐷𝐴) ∈ ℝ*) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2720, 25, 26syl2anc 411 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = (𝐵𝐷𝐴) ↔ ((𝐴𝐷𝐵) ≤ (𝐵𝐷𝐴) ∧ (𝐵𝐷𝐴) ≤ (𝐴𝐷𝐵))))
2814, 24, 27mpbir2and 947 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  cfv 5276  (class class class)co 5951  0cc0 7932  *cxr 8113  cle 8115   +𝑒 cxad 9899  PsMetcpsmet 14341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-apti 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-map 6744  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-xadd 9902  df-psmet 14349
This theorem is referenced by:  psmettri  14846  distspace  14851  elbl3ps  14910  blssps  14943
  Copyright terms: Public domain W3C validator