ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrvalstrd Unicode version

Theorem psrvalstrd 14222
Description: The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
psrvalstrd.b  |-  ( ph  ->  B  e.  X )
psrvalstrd.plusg  |-  ( ph  ->  .+  e.  Y )
psrvalstrd.ips  |-  ( ph  ->  .X.  e.  Z )
psrvalstrd.r  |-  ( ph  ->  R  e.  W )
psrvalstrd.mulr  |-  ( ph  ->  .x.  e.  P )
psrvalstrd.j  |-  ( ph  ->  J  e.  Q )
Assertion
Ref Expression
psrvalstrd  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) Struct  <. 1 ,  9 >. )

Proof of Theorem psrvalstrd
StepHypRef Expression
1 psrvalstrd.b . . 3  |-  ( ph  ->  B  e.  X )
2 psrvalstrd.plusg . . 3  |-  ( ph  ->  .+  e.  Y )
3 psrvalstrd.ips . . 3  |-  ( ph  ->  .X.  e.  Z )
4 eqid 2196 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }
54rngstrg 12812 . . 3  |-  ( ( B  e.  X  /\  .+  e.  Y  /\  .X.  e.  Z )  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. } Struct  <. 1 ,  3 >. )
61, 2, 3, 5syl3anc 1249 . 2  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. } Struct  <. 1 ,  3 >. )
7 psrvalstrd.r . . 3  |-  ( ph  ->  R  e.  W )
8 psrvalstrd.mulr . . 3  |-  ( ph  ->  .x.  e.  P )
9 psrvalstrd.j . . 3  |-  ( ph  ->  J  e.  Q )
10 5nn 9155 . . . 4  |-  5  e.  NN
11 scandx 12828 . . . 4  |-  (Scalar `  ndx )  =  5
12 5lt6 9170 . . . 4  |-  5  <  6
13 6nn 9156 . . . 4  |-  6  e.  NN
14 vscandx 12834 . . . 4  |-  ( .s
`  ndx )  =  6
15 6lt9 9190 . . . 4  |-  6  <  9
16 9nn 9159 . . . 4  |-  9  e.  NN
17 tsetndx 12863 . . . 4  |-  (TopSet `  ndx )  =  9
1810, 11, 12, 13, 14, 15, 16, 17strle3g 12786 . . 3  |-  ( ( R  e.  W  /\  .x. 
e.  P  /\  J  e.  Q )  ->  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  .x.  >. ,  <. (TopSet `  ndx ) ,  J >. } Struct  <. 5 ,  9
>. )
197, 8, 9, 18syl3anc 1249 . 2  |-  ( ph  ->  { <. (Scalar `  ndx ) ,  R >. , 
<. ( .s `  ndx ) ,  .x.  >. ,  <. (TopSet `  ndx ) ,  J >. } Struct  <. 5 ,  9
>. )
20 3lt5 9167 . . 3  |-  3  <  5
2120a1i 9 . 2  |-  ( ph  ->  3  <  5 )
226, 19, 21strleund 12781 1  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) Struct  <. 1 ,  9 >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    u. cun 3155   {ctp 3624   <.cop 3625   class class class wbr 4033   ` cfv 5258   1c1 7880    < clt 8061   3c3 9042   5c5 9044   6c6 9045   9c9 9048   Struct cstr 12674   ndxcnx 12675   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759  TopSetcts 12761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-tset 12774
This theorem is referenced by:  psrbasg  14227  psrplusgg  14230
  Copyright terms: Public domain W3C validator