ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbaglesuppg Unicode version

Theorem psrbaglesuppg 14302
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbaglesuppg  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  ( `' G " NN ) 
C_  ( `' F " NN ) )
Distinct variable groups:    f, F    f, I
Allowed substitution hints:    D( f)    G( f)    V( f)

Proof of Theorem psrbaglesuppg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simplr1 1041 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F  e.  D )
2 simpll 527 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  I  e.  V )
3 psrbag.d . . . . . . . . . . 11  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
43psrbag 14299 . . . . . . . . . 10  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
52, 4syl 14 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
61, 5mpbid 147 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) )
76simpld 112 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F : I --> NN0 )
8 simpr 110 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  ( `' G " NN ) )
9 simplr2 1042 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G : I --> NN0 )
109ffnd 5411 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G  Fn  I )
11 elpreima 5684 . . . . . . . . . 10  |-  ( G  Fn  I  ->  (
x  e.  ( `' G " NN )  <-> 
( x  e.  I  /\  ( G `  x
)  e.  NN ) ) )
1210, 11syl 14 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
x  e.  ( `' G " NN )  <-> 
( x  e.  I  /\  ( G `  x
)  e.  NN ) ) )
138, 12mpbid 147 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
x  e.  I  /\  ( G `  x )  e.  NN ) )
1413simpld 112 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  I )
157, 14ffvelcdmd 5701 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  NN0 )
1615nn0zd 9463 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  ZZ )
17 1red 8058 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  e.  RR )
18 ffun 5413 . . . . . . . . . 10  |-  ( G : I --> NN0  ->  Fun 
G )
19183ad2ant2 1021 . . . . . . . . 9  |-  ( ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
)  ->  Fun  G )
2019ad2antlr 489 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  Fun  G )
21 fvimacnvi 5679 . . . . . . . 8  |-  ( ( Fun  G  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  NN )
2220, 8, 21syl2anc 411 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  NN )
2322nnred 9020 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  RR )
2415nn0red 9320 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  RR )
2522nnge1d 9050 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  <_  ( G `  x
) )
26 simplr3 1043 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G  oR  <_  F )
277ffnd 5411 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F  Fn  I )
28 inidm 3373 . . . . . . . 8  |-  ( I  i^i  I )  =  I
29 eqidd 2197 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  x  e.  I )  ->  ( G `  x )  =  ( G `  x ) )
30 eqidd 2197 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  x  e.  I )  ->  ( F `  x )  =  ( F `  x ) )
3110, 27, 2, 2, 28, 29, 30ofrval 6150 . . . . . . 7  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  G  oR  <_  F  /\  x  e.  I )  ->  ( G `  x
)  <_  ( F `  x ) )
3226, 14, 31mpd3an23 1350 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  <_  ( F `  x
) )
3317, 23, 24, 25, 32letrd 8167 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  <_  ( F `  x
) )
34 elnnz1 9366 . . . . 5  |-  ( ( F `  x )  e.  NN  <->  ( ( F `  x )  e.  ZZ  /\  1  <_ 
( F `  x
) ) )
3516, 33, 34sylanbrc 417 . . . 4  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  NN )
367ffund 5414 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  Fun  F )
377fdmd 5417 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  dom  F  =  I )
3814, 37eleqtrrd 2276 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  dom  F )
39 fvimacnv 5680 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  NN  <->  x  e.  ( `' F " NN ) ) )
4036, 38, 39syl2anc 411 . . . 4  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
( F `  x
)  e.  NN  <->  x  e.  ( `' F " NN ) ) )
4135, 40mpbid 147 . . 3  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  ( `' F " NN ) )
4241ex 115 . 2  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  (
x  e.  ( `' G " NN )  ->  x  e.  ( `' F " NN ) ) )
4342ssrdv 3190 1  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  ( `' G " NN ) 
C_  ( `' F " NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479    C_ wss 3157   class class class wbr 4034   `'ccnv 4663   dom cdm 4664   "cima 4667   Fun wfun 5253    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925    oRcofr 6138    ^m cmap 6716   Fincfn 6808   1c1 7897    <_ cle 8079   NNcn 9007   NN0cn0 9266   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-ofr 6140  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator