ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbaglesuppg Unicode version

Theorem psrbaglesuppg 14636
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbaglesuppg  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  ( `' G " NN ) 
C_  ( `' F " NN ) )
Distinct variable groups:    f, F    f, I
Allowed substitution hints:    D( f)    G( f)    V( f)

Proof of Theorem psrbaglesuppg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simplr1 1063 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F  e.  D )
2 simpll 527 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  I  e.  V )
3 psrbag.d . . . . . . . . . . 11  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
43psrbag 14633 . . . . . . . . . 10  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
52, 4syl 14 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
61, 5mpbid 147 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) )
76simpld 112 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F : I --> NN0 )
8 simpr 110 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  ( `' G " NN ) )
9 simplr2 1064 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G : I --> NN0 )
109ffnd 5474 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G  Fn  I )
11 elpreima 5754 . . . . . . . . . 10  |-  ( G  Fn  I  ->  (
x  e.  ( `' G " NN )  <-> 
( x  e.  I  /\  ( G `  x
)  e.  NN ) ) )
1210, 11syl 14 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
x  e.  ( `' G " NN )  <-> 
( x  e.  I  /\  ( G `  x
)  e.  NN ) ) )
138, 12mpbid 147 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
x  e.  I  /\  ( G `  x )  e.  NN ) )
1413simpld 112 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  I )
157, 14ffvelcdmd 5771 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  NN0 )
1615nn0zd 9567 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  ZZ )
17 1red 8161 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  e.  RR )
18 ffun 5476 . . . . . . . . . 10  |-  ( G : I --> NN0  ->  Fun 
G )
19183ad2ant2 1043 . . . . . . . . 9  |-  ( ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
)  ->  Fun  G )
2019ad2antlr 489 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  Fun  G )
21 fvimacnvi 5749 . . . . . . . 8  |-  ( ( Fun  G  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  NN )
2220, 8, 21syl2anc 411 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  NN )
2322nnred 9123 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  RR )
2415nn0red 9423 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  RR )
2522nnge1d 9153 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  <_  ( G `  x
) )
26 simplr3 1065 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G  oR  <_  F )
277ffnd 5474 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F  Fn  I )
28 inidm 3413 . . . . . . . 8  |-  ( I  i^i  I )  =  I
29 eqidd 2230 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  x  e.  I )  ->  ( G `  x )  =  ( G `  x ) )
30 eqidd 2230 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  x  e.  I )  ->  ( F `  x )  =  ( F `  x ) )
3110, 27, 2, 2, 28, 29, 30ofrval 6229 . . . . . . 7  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  G  oR  <_  F  /\  x  e.  I )  ->  ( G `  x
)  <_  ( F `  x ) )
3226, 14, 31mpd3an23 1373 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  <_  ( F `  x
) )
3317, 23, 24, 25, 32letrd 8270 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  <_  ( F `  x
) )
34 elnnz1 9469 . . . . 5  |-  ( ( F `  x )  e.  NN  <->  ( ( F `  x )  e.  ZZ  /\  1  <_ 
( F `  x
) ) )
3516, 33, 34sylanbrc 417 . . . 4  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  NN )
367ffund 5477 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  Fun  F )
377fdmd 5480 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  dom  F  =  I )
3814, 37eleqtrrd 2309 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  dom  F )
39 fvimacnv 5750 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  NN  <->  x  e.  ( `' F " NN ) ) )
4036, 38, 39syl2anc 411 . . . 4  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
( F `  x
)  e.  NN  <->  x  e.  ( `' F " NN ) ) )
4135, 40mpbid 147 . . 3  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  ( `' F " NN ) )
4241ex 115 . 2  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  (
x  e.  ( `' G " NN )  ->  x  e.  ( `' F " NN ) ) )
4342ssrdv 3230 1  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  ( `' G " NN ) 
C_  ( `' F " NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   class class class wbr 4083   `'ccnv 4718   dom cdm 4719   "cima 4722   Fun wfun 5312    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6001    oRcofr 6217    ^m cmap 6795   Fincfn 6887   1c1 8000    <_ cle 8182   NNcn 9110   NN0cn0 9369   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-ofr 6219  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator