| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrbaglesuppg | Unicode version | ||
| Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrbag.d |
|
| Ref | Expression |
|---|---|
| psrbaglesuppg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr1 1042 |
. . . . . . . . 9
| |
| 2 | simpll 527 |
. . . . . . . . . 10
| |
| 3 | psrbag.d |
. . . . . . . . . . 11
| |
| 4 | 3 | psrbag 14546 |
. . . . . . . . . 10
|
| 5 | 2, 4 | syl 14 |
. . . . . . . . 9
|
| 6 | 1, 5 | mpbid 147 |
. . . . . . . 8
|
| 7 | 6 | simpld 112 |
. . . . . . 7
|
| 8 | simpr 110 |
. . . . . . . . 9
| |
| 9 | simplr2 1043 |
. . . . . . . . . . 11
| |
| 10 | 9 | ffnd 5446 |
. . . . . . . . . 10
|
| 11 | elpreima 5722 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
|
| 13 | 8, 12 | mpbid 147 |
. . . . . . . 8
|
| 14 | 13 | simpld 112 |
. . . . . . 7
|
| 15 | 7, 14 | ffvelcdmd 5739 |
. . . . . 6
|
| 16 | 15 | nn0zd 9528 |
. . . . 5
|
| 17 | 1red 8122 |
. . . . . 6
| |
| 18 | ffun 5448 |
. . . . . . . . . 10
| |
| 19 | 18 | 3ad2ant2 1022 |
. . . . . . . . 9
|
| 20 | 19 | ad2antlr 489 |
. . . . . . . 8
|
| 21 | fvimacnvi 5717 |
. . . . . . . 8
| |
| 22 | 20, 8, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 22 | nnred 9084 |
. . . . . 6
|
| 24 | 15 | nn0red 9384 |
. . . . . 6
|
| 25 | 22 | nnge1d 9114 |
. . . . . 6
|
| 26 | simplr3 1044 |
. . . . . . 7
| |
| 27 | 7 | ffnd 5446 |
. . . . . . . 8
|
| 28 | inidm 3390 |
. . . . . . . 8
| |
| 29 | eqidd 2208 |
. . . . . . . 8
| |
| 30 | eqidd 2208 |
. . . . . . . 8
| |
| 31 | 10, 27, 2, 2, 28, 29, 30 | ofrval 6192 |
. . . . . . 7
|
| 32 | 26, 14, 31 | mpd3an23 1352 |
. . . . . 6
|
| 33 | 17, 23, 24, 25, 32 | letrd 8231 |
. . . . 5
|
| 34 | elnnz1 9430 |
. . . . 5
| |
| 35 | 16, 33, 34 | sylanbrc 417 |
. . . 4
|
| 36 | 7 | ffund 5449 |
. . . . 5
|
| 37 | 7 | fdmd 5452 |
. . . . . 6
|
| 38 | 14, 37 | eleqtrrd 2287 |
. . . . 5
|
| 39 | fvimacnv 5718 |
. . . . 5
| |
| 40 | 36, 38, 39 | syl2anc 411 |
. . . 4
|
| 41 | 35, 40 | mpbid 147 |
. . 3
|
| 42 | 41 | ex 115 |
. 2
|
| 43 | 42 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-ofr 6182 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |