ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbaglesuppg Unicode version

Theorem psrbaglesuppg 14434
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbaglesuppg  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  ( `' G " NN ) 
C_  ( `' F " NN ) )
Distinct variable groups:    f, F    f, I
Allowed substitution hints:    D( f)    G( f)    V( f)

Proof of Theorem psrbaglesuppg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simplr1 1042 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F  e.  D )
2 simpll 527 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  I  e.  V )
3 psrbag.d . . . . . . . . . . 11  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
43psrbag 14431 . . . . . . . . . 10  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
52, 4syl 14 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
61, 5mpbid 147 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) )
76simpld 112 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F : I --> NN0 )
8 simpr 110 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  ( `' G " NN ) )
9 simplr2 1043 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G : I --> NN0 )
109ffnd 5426 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G  Fn  I )
11 elpreima 5699 . . . . . . . . . 10  |-  ( G  Fn  I  ->  (
x  e.  ( `' G " NN )  <-> 
( x  e.  I  /\  ( G `  x
)  e.  NN ) ) )
1210, 11syl 14 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
x  e.  ( `' G " NN )  <-> 
( x  e.  I  /\  ( G `  x
)  e.  NN ) ) )
138, 12mpbid 147 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
x  e.  I  /\  ( G `  x )  e.  NN ) )
1413simpld 112 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  I )
157, 14ffvelcdmd 5716 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  NN0 )
1615nn0zd 9493 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  ZZ )
17 1red 8087 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  e.  RR )
18 ffun 5428 . . . . . . . . . 10  |-  ( G : I --> NN0  ->  Fun 
G )
19183ad2ant2 1022 . . . . . . . . 9  |-  ( ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
)  ->  Fun  G )
2019ad2antlr 489 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  Fun  G )
21 fvimacnvi 5694 . . . . . . . 8  |-  ( ( Fun  G  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  NN )
2220, 8, 21syl2anc 411 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  NN )
2322nnred 9049 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  e.  RR )
2415nn0red 9349 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  RR )
2522nnge1d 9079 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  <_  ( G `  x
) )
26 simplr3 1044 . . . . . . 7  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  G  oR  <_  F )
277ffnd 5426 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  F  Fn  I )
28 inidm 3382 . . . . . . . 8  |-  ( I  i^i  I )  =  I
29 eqidd 2206 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  x  e.  I )  ->  ( G `  x )  =  ( G `  x ) )
30 eqidd 2206 . . . . . . . 8  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  x  e.  I )  ->  ( F `  x )  =  ( F `  x ) )
3110, 27, 2, 2, 28, 29, 30ofrval 6169 . . . . . . 7  |-  ( ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  /\  G  oR  <_  F  /\  x  e.  I )  ->  ( G `  x
)  <_  ( F `  x ) )
3226, 14, 31mpd3an23 1352 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( G `  x )  <_  ( F `  x
) )
3317, 23, 24, 25, 32letrd 8196 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  1  <_  ( F `  x
) )
34 elnnz1 9395 . . . . 5  |-  ( ( F `  x )  e.  NN  <->  ( ( F `  x )  e.  ZZ  /\  1  <_ 
( F `  x
) ) )
3516, 33, 34sylanbrc 417 . . . 4  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  ( F `  x )  e.  NN )
367ffund 5429 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  Fun  F )
377fdmd 5432 . . . . . 6  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  dom  F  =  I )
3814, 37eleqtrrd 2285 . . . . 5  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  dom  F )
39 fvimacnv 5695 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  NN  <->  x  e.  ( `' F " NN ) ) )
4036, 38, 39syl2anc 411 . . . 4  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  (
( F `  x
)  e.  NN  <->  x  e.  ( `' F " NN ) ) )
4135, 40mpbid 147 . . 3  |-  ( ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  /\  x  e.  ( `' G " NN ) )  ->  x  e.  ( `' F " NN ) )
4241ex 115 . 2  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  (
x  e.  ( `' G " NN )  ->  x  e.  ( `' F " NN ) ) )
4342ssrdv 3199 1  |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F
) )  ->  ( `' G " NN ) 
C_  ( `' F " NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488    C_ wss 3166   class class class wbr 4044   `'ccnv 4674   dom cdm 4675   "cima 4678   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944    oRcofr 6157    ^m cmap 6735   Fincfn 6827   1c1 7926    <_ cle 8108   NNcn 9036   NN0cn0 9295   ZZcz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-ofr 6159  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator