![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > psrbag | GIF version |
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbag | ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 4836 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
2 | 1 | imaeq1d 5004 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ ℕ) = (◡𝐹 “ ℕ)) |
3 | 2 | eleq1d 2262 | . . 3 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐹 “ ℕ) ∈ Fin)) |
4 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | 3, 4 | elrab2 2919 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin)) |
6 | nn0ex 9246 | . . . 4 ⊢ ℕ0 ∈ V | |
7 | elmapg 6715 | . . . 4 ⊢ ((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑉) → (𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) | |
8 | 6, 7 | mpan 424 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) |
9 | 8 | anbi1d 465 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin) ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
10 | 5, 9 | bitrid 192 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {crab 2476 Vcvv 2760 ◡ccnv 4658 “ cima 4662 ⟶wf 5250 (class class class)co 5918 ↑𝑚 cmap 6702 Fincfn 6794 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-i2m1 7977 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-map 6704 df-inn 8983 df-n0 9241 |
This theorem is referenced by: fczpsrbag 14157 psrbaglesuppg 14158 |
Copyright terms: Public domain | W3C validator |