| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrbag | GIF version | ||
| Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbag | ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 4895 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 2 | 1 | imaeq1d 5066 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ ℕ) = (◡𝐹 “ ℕ)) |
| 3 | 2 | eleq1d 2298 | . . 3 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐹 “ ℕ) ∈ Fin)) |
| 4 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | 3, 4 | elrab2 2962 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin)) |
| 6 | nn0ex 9371 | . . . 4 ⊢ ℕ0 ∈ V | |
| 7 | elmapg 6806 | . . . 4 ⊢ ((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑉) → (𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) | |
| 8 | 6, 7 | mpan 424 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) |
| 9 | 8 | anbi1d 465 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝐹 ∈ (ℕ0 ↑𝑚 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin) ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
| 10 | 5, 9 | bitrid 192 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 ◡ccnv 4717 “ cima 4721 ⟶wf 5313 (class class class)co 6000 ↑𝑚 cmap 6793 Fincfn 6885 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-map 6795 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: fczpsrbag 14629 psrbaglesuppg 14630 |
| Copyright terms: Public domain | W3C validator |