ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbag GIF version

Theorem psrbag 14516
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbag (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbag
StepHypRef Expression
1 cnveq 4865 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
21imaeq1d 5035 . . . 4 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
32eleq1d 2275 . . 3 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
4 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
53, 4elrab2 2936 . 2 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0𝑚 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
6 nn0ex 9331 . . . 4 0 ∈ V
7 elmapg 6766 . . . 4 ((ℕ0 ∈ V ∧ 𝐼𝑉) → (𝐹 ∈ (ℕ0𝑚 𝐼) ↔ 𝐹:𝐼⟶ℕ0))
86, 7mpan 424 . . 3 (𝐼𝑉 → (𝐹 ∈ (ℕ0𝑚 𝐼) ↔ 𝐹:𝐼⟶ℕ0))
98anbi1d 465 . 2 (𝐼𝑉 → ((𝐹 ∈ (ℕ0𝑚 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin) ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
105, 9bitrid 192 1 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  ccnv 4687  cima 4691  wf 5281  (class class class)co 5962  𝑚 cmap 6753  Fincfn 6845  cn 9066  0cn0 9325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-i2m1 8060
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-map 6755  df-inn 9067  df-n0 9326
This theorem is referenced by:  fczpsrbag  14518  psrbaglesuppg  14519
  Copyright terms: Public domain W3C validator