| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rex2dom | GIF version | ||
| Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| rex2dom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | prssi 3825 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴) | |
| 3 | df2o3 6574 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 4 | 0ex 4210 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
| 5 | 4 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ∈ V) |
| 6 | 1oex 6568 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 7 | 6 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 1o ∈ V) |
| 8 | vex 2802 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ∈ V) |
| 10 | vex 2802 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 11 | 10 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑦 ∈ V) |
| 12 | 1n0 6576 | . . . . . . . . . . 11 ⊢ 1o ≠ ∅ | |
| 13 | 12 | necomi 2485 | . . . . . . . . . 10 ⊢ ∅ ≠ 1o |
| 14 | 13 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ≠ 1o) |
| 15 | id 19 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦) | |
| 16 | 5, 7, 9, 11, 14, 15 | en2prd 6968 | . . . . . . . 8 ⊢ (𝑥 ≠ 𝑦 → {∅, 1o} ≈ {𝑥, 𝑦}) |
| 17 | 3, 16 | eqbrtrid 4117 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 → 2o ≈ {𝑥, 𝑦}) |
| 18 | endom 6912 | . . . . . . 7 ⊢ (2o ≈ {𝑥, 𝑦} → 2o ≼ {𝑥, 𝑦}) | |
| 19 | 17, 18 | syl 14 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → 2o ≼ {𝑥, 𝑦}) |
| 20 | domssr 6927 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴) | |
| 21 | 20 | 3expib 1230 | . . . . . 6 ⊢ (𝐴 ∈ V → (({𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴)) |
| 22 | 2, 19, 21 | syl2ani 408 | . . . . 5 ⊢ (𝐴 ∈ V → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 2o ≼ 𝐴)) |
| 23 | 22 | expd 258 | . . . 4 ⊢ (𝐴 ∈ V → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → 2o ≼ 𝐴))) |
| 24 | 23 | rexlimdvv 2655 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
| 25 | 1, 24 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
| 26 | 25 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ≠ wne 2400 ∃wrex 2509 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 {cpr 3667 class class class wbr 4082 1oc1o 6553 2oc2o 6554 ≈ cen 6883 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-2o 6561 df-en 6886 df-dom 6887 |
| This theorem is referenced by: hashdmprop2dom 11061 fun2dmnop0 11064 |
| Copyright terms: Public domain | W3C validator |