| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rex2dom | GIF version | ||
| Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| rex2dom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | prssi 3797 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴) | |
| 3 | df2o3 6529 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 4 | 0ex 4179 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
| 5 | 4 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ∈ V) |
| 6 | 1oex 6523 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 7 | 6 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 1o ∈ V) |
| 8 | vex 2776 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ∈ V) |
| 10 | vex 2776 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 11 | 10 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑦 ∈ V) |
| 12 | 1n0 6531 | . . . . . . . . . . 11 ⊢ 1o ≠ ∅ | |
| 13 | 12 | necomi 2462 | . . . . . . . . . 10 ⊢ ∅ ≠ 1o |
| 14 | 13 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ≠ 1o) |
| 15 | id 19 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦) | |
| 16 | 5, 7, 9, 11, 14, 15 | en2prd 6923 | . . . . . . . 8 ⊢ (𝑥 ≠ 𝑦 → {∅, 1o} ≈ {𝑥, 𝑦}) |
| 17 | 3, 16 | eqbrtrid 4086 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 → 2o ≈ {𝑥, 𝑦}) |
| 18 | endom 6867 | . . . . . . 7 ⊢ (2o ≈ {𝑥, 𝑦} → 2o ≼ {𝑥, 𝑦}) | |
| 19 | 17, 18 | syl 14 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → 2o ≼ {𝑥, 𝑦}) |
| 20 | domssr 6882 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴) | |
| 21 | 20 | 3expib 1209 | . . . . . 6 ⊢ (𝐴 ∈ V → (({𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴)) |
| 22 | 2, 19, 21 | syl2ani 408 | . . . . 5 ⊢ (𝐴 ∈ V → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 2o ≼ 𝐴)) |
| 23 | 22 | expd 258 | . . . 4 ⊢ (𝐴 ∈ V → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → 2o ≼ 𝐴))) |
| 24 | 23 | rexlimdvv 2631 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
| 25 | 1, 24 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
| 26 | 25 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ≠ wne 2377 ∃wrex 2486 Vcvv 2773 ⊆ wss 3170 ∅c0 3464 {cpr 3639 class class class wbr 4051 1oc1o 6508 2oc2o 6509 ≈ cen 6838 ≼ cdom 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-1o 6515 df-2o 6516 df-en 6841 df-dom 6842 |
| This theorem is referenced by: hashdmprop2dom 11011 fun2dmnop0 11014 |
| Copyright terms: Public domain | W3C validator |