ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omoe Unicode version

Theorem omoe 11829
Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omoe  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  -  B ) )

Proof of Theorem omoe
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 11806 . . . . 5  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 odd2np1 11806 . . . . 5  |-  ( B  e.  ZZ  ->  ( -.  2  ||  B  <->  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
31, 2bi2anan9 596 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B ) ) )
4 reeanv 2634 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
5 2z 9215 . . . . . . . . 9  |-  2  e.  ZZ
6 zsubcl 9228 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  -  b
)  e.  ZZ )
7 dvdsmul1 11749 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( a  -  b
)  e.  ZZ )  ->  2  ||  (
2  x.  ( a  -  b ) ) )
85, 6, 7sylancr 411 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( 2  x.  ( a  -  b ) ) )
9 zcn 9192 . . . . . . . . 9  |-  ( a  e.  ZZ  ->  a  e.  CC )
10 zcn 9192 . . . . . . . . 9  |-  ( b  e.  ZZ  ->  b  e.  CC )
11 2cn 8924 . . . . . . . . . . . 12  |-  2  e.  CC
12 mulcl 7876 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
1311, 12mpan 421 . . . . . . . . . . 11  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
14 mulcl 7876 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
1511, 14mpan 421 . . . . . . . . . . 11  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
16 ax-1cn 7842 . . . . . . . . . . . 12  |-  1  e.  CC
17 pnpcan2 8134 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
1816, 17mp3an3 1316 . . . . . . . . . . 11  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( ( 2  x.  b )  +  1 ) )  =  ( ( 2  x.  a
)  -  ( 2  x.  b ) ) )
1913, 15, 18syl2an 287 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
20 subdi 8279 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b
) ) )
2111, 20mp3an1 1314 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
2219, 21eqtr4d 2201 . . . . . . . . 9  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( 2  x.  ( a  -  b ) ) )
239, 10, 22syl2an 287 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( 2  x.  ( a  -  b ) ) )
248, 23breqtrrd 4009 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( ( ( 2  x.  a
)  +  1 )  -  ( ( 2  x.  b )  +  1 ) ) )
25 oveq12 5850 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( ( 2  x.  b )  +  1 ) )  =  ( A  -  B ) )
2625breq2d 3993 . . . . . . 7  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( 2  ||  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  <->  2  ||  ( A  -  B )
) )
2724, 26syl5ibcom 154 . . . . . 6  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  -  B
) ) )
2827rexlimivv 2588 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  -  B )
)
294, 28sylbir 134 . . . 4  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B )  -> 
2  ||  ( A  -  B ) )
303, 29syl6bi 162 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  ->  2  ||  ( A  -  B
) ) )
3130imp 123 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  -  B ) )
3231an4s 578 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   E.wrex 2444   class class class wbr 3981  (class class class)co 5841   CCcc 7747   1c1 7750    + caddc 7752    x. cmul 7754    - cmin 8065   2c2 8904   ZZcz 9187    || cdvds 11723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-opab 4043  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-n0 9111  df-z 9188  df-dvds 11724
This theorem is referenced by:  oddprm  12187  pythagtriplem13  12204
  Copyright terms: Public domain W3C validator