ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omoe Unicode version

Theorem omoe 12040
Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
omoe  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  -  B ) )

Proof of Theorem omoe
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 12017 . . . . 5  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 odd2np1 12017 . . . . 5  |-  ( B  e.  ZZ  ->  ( -.  2  ||  B  <->  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
31, 2bi2anan9 606 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B ) ) )
4 reeanv 2664 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( ( 2  x.  b )  +  1 )  =  B ) )
5 2z 9348 . . . . . . . . 9  |-  2  e.  ZZ
6 zsubcl 9361 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  -  b
)  e.  ZZ )
7 dvdsmul1 11959 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  ( a  -  b
)  e.  ZZ )  ->  2  ||  (
2  x.  ( a  -  b ) ) )
85, 6, 7sylancr 414 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( 2  x.  ( a  -  b ) ) )
9 zcn 9325 . . . . . . . . 9  |-  ( a  e.  ZZ  ->  a  e.  CC )
10 zcn 9325 . . . . . . . . 9  |-  ( b  e.  ZZ  ->  b  e.  CC )
11 2cn 9055 . . . . . . . . . . . 12  |-  2  e.  CC
12 mulcl 8001 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
1311, 12mpan 424 . . . . . . . . . . 11  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
14 mulcl 8001 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
1511, 14mpan 424 . . . . . . . . . . 11  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
16 ax-1cn 7967 . . . . . . . . . . . 12  |-  1  e.  CC
17 pnpcan2 8261 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
1816, 17mp3an3 1337 . . . . . . . . . . 11  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( ( 2  x.  b )  +  1 ) )  =  ( ( 2  x.  a
)  -  ( 2  x.  b ) ) )
1913, 15, 18syl2an 289 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
20 subdi 8406 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b
) ) )
2111, 20mp3an1 1335 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  -  b ) )  =  ( ( 2  x.  a )  -  ( 2  x.  b ) ) )
2219, 21eqtr4d 2229 . . . . . . . . 9  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( 2  x.  ( a  -  b ) ) )
239, 10, 22syl2an 289 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  =  ( 2  x.  ( a  -  b ) ) )
248, 23breqtrrd 4058 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  2  ||  ( ( ( 2  x.  a
)  +  1 )  -  ( ( 2  x.  b )  +  1 ) ) )
25 oveq12 5928 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  -  ( ( 2  x.  b )  +  1 ) )  =  ( A  -  B ) )
2625breq2d 4042 . . . . . . 7  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  ( 2  ||  ( ( ( 2  x.  a )  +  1 )  -  (
( 2  x.  b
)  +  1 ) )  <->  2  ||  ( A  -  B )
) )
2724, 26syl5ibcom 155 . . . . . 6  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  -  B
) ) )
2827rexlimivv 2617 . . . . 5  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( ( 2  x.  b )  +  1 )  =  B )  ->  2  ||  ( A  -  B )
)
294, 28sylbir 135 . . . 4  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
( 2  x.  b
)  +  1 )  =  B )  -> 
2  ||  ( A  -  B ) )
303, 29biimtrdi 163 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  -.  2  ||  B )  ->  2  ||  ( A  -  B
) ) )
3130imp 124 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  -  B ) )
3231an4s 588 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  -.  2  ||  B ) )  -> 
2  ||  ( A  -  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4030  (class class class)co 5919   CCcc 7872   1c1 7875    + caddc 7877    x. cmul 7879    - cmin 8192   2c2 9035   ZZcz 9320    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-dvds 11934
This theorem is referenced by:  oddprm  12400  pythagtriplem13  12417  gausslemma2dlem1a  15215  lgsquad2lem1  15238  lgsquad3  15241
  Copyright terms: Public domain W3C validator