| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omoe | Unicode version | ||
| Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| omoe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 12217 |
. . . . 5
| |
| 2 | odd2np1 12217 |
. . . . 5
| |
| 3 | 1, 2 | bi2anan9 606 |
. . . 4
|
| 4 | reeanv 2676 |
. . . . 5
| |
| 5 | 2z 9402 |
. . . . . . . . 9
| |
| 6 | zsubcl 9415 |
. . . . . . . . 9
| |
| 7 | dvdsmul1 12157 |
. . . . . . . . 9
| |
| 8 | 5, 6, 7 | sylancr 414 |
. . . . . . . 8
|
| 9 | zcn 9379 |
. . . . . . . . 9
| |
| 10 | zcn 9379 |
. . . . . . . . 9
| |
| 11 | 2cn 9109 |
. . . . . . . . . . . 12
| |
| 12 | mulcl 8054 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | mpan 424 |
. . . . . . . . . . 11
|
| 14 | mulcl 8054 |
. . . . . . . . . . . 12
| |
| 15 | 11, 14 | mpan 424 |
. . . . . . . . . . 11
|
| 16 | ax-1cn 8020 |
. . . . . . . . . . . 12
| |
| 17 | pnpcan2 8314 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | mp3an3 1339 |
. . . . . . . . . . 11
|
| 19 | 13, 15, 18 | syl2an 289 |
. . . . . . . . . 10
|
| 20 | subdi 8459 |
. . . . . . . . . . 11
| |
| 21 | 11, 20 | mp3an1 1337 |
. . . . . . . . . 10
|
| 22 | 19, 21 | eqtr4d 2241 |
. . . . . . . . 9
|
| 23 | 9, 10, 22 | syl2an 289 |
. . . . . . . 8
|
| 24 | 8, 23 | breqtrrd 4073 |
. . . . . . 7
|
| 25 | oveq12 5955 |
. . . . . . . 8
| |
| 26 | 25 | breq2d 4057 |
. . . . . . 7
|
| 27 | 24, 26 | syl5ibcom 155 |
. . . . . 6
|
| 28 | 27 | rexlimivv 2629 |
. . . . 5
|
| 29 | 4, 28 | sylbir 135 |
. . . 4
|
| 30 | 3, 29 | biimtrdi 163 |
. . 3
|
| 31 | 30 | imp 124 |
. 2
|
| 32 | 31 | an4s 588 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-n0 9298 df-z 9375 df-dvds 12132 |
| This theorem is referenced by: oddprm 12615 pythagtriplem13 12632 gausslemma2dlem1a 15568 lgsquad2lem1 15591 lgsquad3 15594 |
| Copyright terms: Public domain | W3C validator |