| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | Unicode version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9778 |
. 2
| |
| 2 | zre 9411 |
. . . . 5
| |
| 3 | nnre 9078 |
. . . . . 6
| |
| 4 | nnap0 9100 |
. . . . . 6
| |
| 5 | 3, 4 | jca 306 |
. . . . 5
|
| 6 | redivclap 8839 |
. . . . . 6
| |
| 7 | 6 | 3expb 1207 |
. . . . 5
|
| 8 | 2, 5, 7 | syl2an 289 |
. . . 4
|
| 9 | eleq1 2270 |
. . . 4
| |
| 10 | 8, 9 | syl5ibrcom 157 |
. . 3
|
| 11 | 10 | rexlimivv 2631 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-z 9408 df-q 9776 |
| This theorem is referenced by: qssre 9786 qltlen 9796 qlttri2 9797 irradd 9802 irrmul 9803 qletric 10421 qlelttric 10422 qltnle 10423 qdceq 10424 qdclt 10425 qdcle 10426 qbtwnz 10431 qbtwnxr 10437 qavgle 10438 ioo0 10439 ioom 10440 ico0 10441 ioc0 10442 xqltnle 10447 flqcl 10453 flqlelt 10456 qfraclt1 10460 qfracge0 10461 flqge 10462 flqltnz 10467 flqwordi 10468 flqbi 10470 flqbi2 10471 flqaddz 10477 flqmulnn0 10479 flltdivnn0lt 10484 ceilqval 10488 ceiqge 10491 ceiqm1l 10493 ceiqle 10495 flqleceil 10499 flqeqceilz 10500 intfracq 10502 flqdiv 10503 modqval 10506 modq0 10511 mulqmod0 10512 negqmod0 10513 modqge0 10514 modqlt 10515 modqelico 10516 modqdiffl 10517 modqmulnn 10524 modqid 10531 modqid0 10532 modqabs 10539 modqabs2 10540 modqcyc 10541 mulqaddmodid 10546 modqmuladdim 10549 modqmuladdnn0 10550 modqltm1p1mod 10558 q2txmodxeq0 10566 q2submod 10567 modqdi 10574 modqsubdir 10575 qsqeqor 10832 fimaxq 11009 qabsor 11501 qdenre 11628 expcnvre 11929 flodddiv4t2lthalf 12365 bitsmod 12382 bitsinv1lem 12387 sqrt2irraplemnn 12616 sqrt2irrap 12617 qnumgt0 12635 4sqlem6 12821 blssps 15014 blss 15015 qtopbas 15109 logbgcd1irraplemap 15556 qdencn 16168 apdifflemf 16187 |
| Copyright terms: Public domain | W3C validator |