| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | Unicode version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9817 |
. 2
| |
| 2 | zre 9450 |
. . . . 5
| |
| 3 | nnre 9117 |
. . . . . 6
| |
| 4 | nnap0 9139 |
. . . . . 6
| |
| 5 | 3, 4 | jca 306 |
. . . . 5
|
| 6 | redivclap 8878 |
. . . . . 6
| |
| 7 | 6 | 3expb 1228 |
. . . . 5
|
| 8 | 2, 5, 7 | syl2an 289 |
. . . 4
|
| 9 | eleq1 2292 |
. . . 4
| |
| 10 | 8, 9 | syl5ibrcom 157 |
. . 3
|
| 11 | 10 | rexlimivv 2654 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-z 9447 df-q 9815 |
| This theorem is referenced by: qssre 9825 qltlen 9835 qlttri2 9836 irradd 9841 irrmul 9842 qletric 10461 qlelttric 10462 qltnle 10463 qdceq 10464 qdclt 10465 qdcle 10466 qbtwnz 10471 qbtwnxr 10477 qavgle 10478 ioo0 10479 ioom 10480 ico0 10481 ioc0 10482 xqltnle 10487 flqcl 10493 flqlelt 10496 qfraclt1 10500 qfracge0 10501 flqge 10502 flqltnz 10507 flqwordi 10508 flqbi 10510 flqbi2 10511 flqaddz 10517 flqmulnn0 10519 flltdivnn0lt 10524 ceilqval 10528 ceiqge 10531 ceiqm1l 10533 ceiqle 10535 flqleceil 10539 flqeqceilz 10540 intfracq 10542 flqdiv 10543 modqval 10546 modq0 10551 mulqmod0 10552 negqmod0 10553 modqge0 10554 modqlt 10555 modqelico 10556 modqdiffl 10557 modqmulnn 10564 modqid 10571 modqid0 10572 modqabs 10579 modqabs2 10580 modqcyc 10581 mulqaddmodid 10586 modqmuladdim 10589 modqmuladdnn0 10590 modqltm1p1mod 10598 q2txmodxeq0 10606 q2submod 10607 modqdi 10614 modqsubdir 10615 qsqeqor 10872 fimaxq 11049 qabsor 11586 qdenre 11713 expcnvre 12014 flodddiv4t2lthalf 12450 bitsmod 12467 bitsinv1lem 12472 sqrt2irraplemnn 12701 sqrt2irrap 12702 qnumgt0 12720 4sqlem6 12906 blssps 15101 blss 15102 qtopbas 15196 logbgcd1irraplemap 15643 qdencn 16395 apdifflemf 16414 |
| Copyright terms: Public domain | W3C validator |