| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | Unicode version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9713 |
. 2
| |
| 2 | zre 9347 |
. . . . 5
| |
| 3 | nnre 9014 |
. . . . . 6
| |
| 4 | nnap0 9036 |
. . . . . 6
| |
| 5 | 3, 4 | jca 306 |
. . . . 5
|
| 6 | redivclap 8775 |
. . . . . 6
| |
| 7 | 6 | 3expb 1206 |
. . . . 5
|
| 8 | 2, 5, 7 | syl2an 289 |
. . . 4
|
| 9 | eleq1 2259 |
. . . 4
| |
| 10 | 8, 9 | syl5ibrcom 157 |
. . 3
|
| 11 | 10 | rexlimivv 2620 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-z 9344 df-q 9711 |
| This theorem is referenced by: qssre 9721 qltlen 9731 qlttri2 9732 irradd 9737 irrmul 9738 qletric 10348 qlelttric 10349 qltnle 10350 qdceq 10351 qdclt 10352 qdcle 10353 qbtwnz 10358 qbtwnxr 10364 qavgle 10365 ioo0 10366 ioom 10367 ico0 10368 ioc0 10369 xqltnle 10374 flqcl 10380 flqlelt 10383 qfraclt1 10387 qfracge0 10388 flqge 10389 flqltnz 10394 flqwordi 10395 flqbi 10397 flqbi2 10398 flqaddz 10404 flqmulnn0 10406 flltdivnn0lt 10411 ceilqval 10415 ceiqge 10418 ceiqm1l 10420 ceiqle 10422 flqleceil 10426 flqeqceilz 10427 intfracq 10429 flqdiv 10430 modqval 10433 modq0 10438 mulqmod0 10439 negqmod0 10440 modqge0 10441 modqlt 10442 modqelico 10443 modqdiffl 10444 modqmulnn 10451 modqid 10458 modqid0 10459 modqabs 10466 modqabs2 10467 modqcyc 10468 mulqaddmodid 10473 modqmuladdim 10476 modqmuladdnn0 10477 modqltm1p1mod 10485 q2txmodxeq0 10493 q2submod 10494 modqdi 10501 modqsubdir 10502 qsqeqor 10759 fimaxq 10936 qabsor 11257 qdenre 11384 expcnvre 11685 flodddiv4t2lthalf 12121 bitsmod 12138 bitsinv1lem 12143 sqrt2irraplemnn 12372 sqrt2irrap 12373 qnumgt0 12391 4sqlem6 12577 blssps 14747 blss 14748 qtopbas 14842 logbgcd1irraplemap 15289 qdencn 15758 apdifflemf 15777 |
| Copyright terms: Public domain | W3C validator |