| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | Unicode version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9745 |
. 2
| |
| 2 | zre 9378 |
. . . . 5
| |
| 3 | nnre 9045 |
. . . . . 6
| |
| 4 | nnap0 9067 |
. . . . . 6
| |
| 5 | 3, 4 | jca 306 |
. . . . 5
|
| 6 | redivclap 8806 |
. . . . . 6
| |
| 7 | 6 | 3expb 1207 |
. . . . 5
|
| 8 | 2, 5, 7 | syl2an 289 |
. . . 4
|
| 9 | eleq1 2268 |
. . . 4
| |
| 10 | 8, 9 | syl5ibrcom 157 |
. . 3
|
| 11 | 10 | rexlimivv 2629 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-po 4344 df-iso 4345 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-z 9375 df-q 9743 |
| This theorem is referenced by: qssre 9753 qltlen 9763 qlttri2 9764 irradd 9769 irrmul 9770 qletric 10386 qlelttric 10387 qltnle 10388 qdceq 10389 qdclt 10390 qdcle 10391 qbtwnz 10396 qbtwnxr 10402 qavgle 10403 ioo0 10404 ioom 10405 ico0 10406 ioc0 10407 xqltnle 10412 flqcl 10418 flqlelt 10421 qfraclt1 10425 qfracge0 10426 flqge 10427 flqltnz 10432 flqwordi 10433 flqbi 10435 flqbi2 10436 flqaddz 10442 flqmulnn0 10444 flltdivnn0lt 10449 ceilqval 10453 ceiqge 10456 ceiqm1l 10458 ceiqle 10460 flqleceil 10464 flqeqceilz 10465 intfracq 10467 flqdiv 10468 modqval 10471 modq0 10476 mulqmod0 10477 negqmod0 10478 modqge0 10479 modqlt 10480 modqelico 10481 modqdiffl 10482 modqmulnn 10489 modqid 10496 modqid0 10497 modqabs 10504 modqabs2 10505 modqcyc 10506 mulqaddmodid 10511 modqmuladdim 10514 modqmuladdnn0 10515 modqltm1p1mod 10523 q2txmodxeq0 10531 q2submod 10532 modqdi 10539 modqsubdir 10540 qsqeqor 10797 fimaxq 10974 qabsor 11419 qdenre 11546 expcnvre 11847 flodddiv4t2lthalf 12283 bitsmod 12300 bitsinv1lem 12305 sqrt2irraplemnn 12534 sqrt2irrap 12535 qnumgt0 12553 4sqlem6 12739 blssps 14932 blss 14933 qtopbas 15027 logbgcd1irraplemap 15474 qdencn 16003 apdifflemf 16022 |
| Copyright terms: Public domain | W3C validator |