Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qre | Unicode version |
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
Ref | Expression |
---|---|
qre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9570 | . 2 | |
2 | zre 9205 | . . . . 5 | |
3 | nnre 8874 | . . . . . 6 | |
4 | nnap0 8896 | . . . . . 6 # | |
5 | 3, 4 | jca 304 | . . . . 5 # |
6 | redivclap 8637 | . . . . . 6 # | |
7 | 6 | 3expb 1199 | . . . . 5 # |
8 | 2, 5, 7 | syl2an 287 | . . . 4 |
9 | eleq1 2233 | . . . 4 | |
10 | 8, 9 | syl5ibrcom 156 | . . 3 |
11 | 10 | rexlimivv 2593 | . 2 |
12 | 1, 11 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3987 (class class class)co 5851 cr 7762 cc0 7763 # cap 8489 cdiv 8578 cn 8867 cz 9201 cq 9567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-z 9202 df-q 9568 |
This theorem is referenced by: qssre 9578 qltlen 9588 qlttri2 9589 irradd 9594 irrmul 9595 qletric 10189 qlelttric 10190 qltnle 10191 qdceq 10192 qbtwnz 10197 qbtwnxr 10203 qavgle 10204 ioo0 10205 ioom 10206 ico0 10207 ioc0 10208 flqcl 10218 flqlelt 10221 qfraclt1 10225 qfracge0 10226 flqge 10227 flqltnz 10232 flqwordi 10233 flqbi 10235 flqbi2 10236 flqaddz 10242 flqmulnn0 10244 flltdivnn0lt 10249 ceilqval 10251 ceiqge 10254 ceiqm1l 10256 ceiqle 10258 flqleceil 10262 flqeqceilz 10263 intfracq 10265 flqdiv 10266 modqval 10269 modq0 10274 mulqmod0 10275 negqmod0 10276 modqge0 10277 modqlt 10278 modqelico 10279 modqdiffl 10280 modqmulnn 10287 modqid 10294 modqid0 10295 modqabs 10302 modqabs2 10303 modqcyc 10304 mulqaddmodid 10309 modqmuladdim 10312 modqmuladdnn0 10313 modqltm1p1mod 10321 q2txmodxeq0 10329 q2submod 10330 modqdi 10337 modqsubdir 10338 qsqeqor 10575 fimaxq 10751 qabsor 11028 qdenre 11155 expcnvre 11455 flodddiv4t2lthalf 11885 sqrt2irraplemnn 12122 sqrt2irrap 12123 qnumgt0 12141 4sqlem6 12324 blssps 13182 blss 13183 qtopbas 13277 logbgcd1irraplemap 13642 qdencn 14021 apdifflemf 14040 |
Copyright terms: Public domain | W3C validator |