![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qre | Unicode version |
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
Ref | Expression |
---|---|
qre |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9105 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | zre 8752 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | nnre 8427 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | nnap0 8449 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | jca 300 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | redivclap 8196 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 6 | 3expb 1144 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 2, 5, 7 | syl2an 283 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | eleq1 2150 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | syl5ibrcom 155 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | rexlimivv 2494 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 11 | sylbi 119 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-mulrcl 7442 ax-addcom 7443 ax-mulcom 7444 ax-addass 7445 ax-mulass 7446 ax-distr 7447 ax-i2m1 7448 ax-0lt1 7449 ax-1rid 7450 ax-0id 7451 ax-rnegex 7452 ax-precex 7453 ax-cnre 7454 ax-pre-ltirr 7455 ax-pre-ltwlin 7456 ax-pre-lttrn 7457 ax-pre-apti 7458 ax-pre-ltadd 7459 ax-pre-mulgt0 7460 ax-pre-mulext 7461 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-po 4123 df-iso 4124 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 df-sub 7653 df-neg 7654 df-reap 8050 df-ap 8057 df-div 8138 df-inn 8421 df-z 8749 df-q 9103 |
This theorem is referenced by: qssre 9113 qltlen 9123 qlttri2 9124 irradd 9129 irrmul 9130 qletric 9651 qlelttric 9652 qltnle 9653 qdceq 9654 qbtwnz 9659 qbtwnxr 9665 qavgle 9666 ioo0 9667 ioom 9668 ico0 9669 ioc0 9670 flqcl 9676 flqlelt 9679 qfraclt1 9683 qfracge0 9684 flqge 9685 flqltnz 9690 flqwordi 9691 flqbi 9693 flqbi2 9694 flqaddz 9700 flqmulnn0 9702 flltdivnn0lt 9707 ceilqval 9709 ceiqge 9712 ceiqm1l 9714 ceiqle 9716 flqleceil 9720 flqeqceilz 9721 intfracq 9723 flqdiv 9724 modqval 9727 modq0 9732 mulqmod0 9733 negqmod0 9734 modqge0 9735 modqlt 9736 modqelico 9737 modqdiffl 9738 modqmulnn 9745 modqid 9752 modqid0 9753 modqabs 9760 modqabs2 9761 modqcyc 9762 mulqaddmodid 9767 modqmuladdim 9770 modqmuladdnn0 9771 modqltm1p1mod 9779 q2txmodxeq0 9787 q2submod 9788 modqdi 9795 modqsubdir 9796 fimaxq 10231 qabsor 10504 qdenre 10631 expcnvre 10893 flodddiv4t2lthalf 11211 sqrt2irraplemnn 11431 sqrt2irrap 11432 qnumgt0 11450 qdencn 11870 |
Copyright terms: Public domain | W3C validator |