| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | Unicode version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9743 |
. 2
| |
| 2 | zre 9376 |
. . . . 5
| |
| 3 | nnre 9043 |
. . . . . 6
| |
| 4 | nnap0 9065 |
. . . . . 6
| |
| 5 | 3, 4 | jca 306 |
. . . . 5
|
| 6 | redivclap 8804 |
. . . . . 6
| |
| 7 | 6 | 3expb 1207 |
. . . . 5
|
| 8 | 2, 5, 7 | syl2an 289 |
. . . 4
|
| 9 | eleq1 2268 |
. . . 4
| |
| 10 | 8, 9 | syl5ibrcom 157 |
. . 3
|
| 11 | 10 | rexlimivv 2629 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-z 9373 df-q 9741 |
| This theorem is referenced by: qssre 9751 qltlen 9761 qlttri2 9762 irradd 9767 irrmul 9768 qletric 10384 qlelttric 10385 qltnle 10386 qdceq 10387 qdclt 10388 qdcle 10389 qbtwnz 10394 qbtwnxr 10400 qavgle 10401 ioo0 10402 ioom 10403 ico0 10404 ioc0 10405 xqltnle 10410 flqcl 10416 flqlelt 10419 qfraclt1 10423 qfracge0 10424 flqge 10425 flqltnz 10430 flqwordi 10431 flqbi 10433 flqbi2 10434 flqaddz 10440 flqmulnn0 10442 flltdivnn0lt 10447 ceilqval 10451 ceiqge 10454 ceiqm1l 10456 ceiqle 10458 flqleceil 10462 flqeqceilz 10463 intfracq 10465 flqdiv 10466 modqval 10469 modq0 10474 mulqmod0 10475 negqmod0 10476 modqge0 10477 modqlt 10478 modqelico 10479 modqdiffl 10480 modqmulnn 10487 modqid 10494 modqid0 10495 modqabs 10502 modqabs2 10503 modqcyc 10504 mulqaddmodid 10509 modqmuladdim 10512 modqmuladdnn0 10513 modqltm1p1mod 10521 q2txmodxeq0 10529 q2submod 10530 modqdi 10537 modqsubdir 10538 qsqeqor 10795 fimaxq 10972 qabsor 11386 qdenre 11513 expcnvre 11814 flodddiv4t2lthalf 12250 bitsmod 12267 bitsinv1lem 12272 sqrt2irraplemnn 12501 sqrt2irrap 12502 qnumgt0 12520 4sqlem6 12706 blssps 14899 blss 14900 qtopbas 14994 logbgcd1irraplemap 15441 qdencn 15966 apdifflemf 15985 |
| Copyright terms: Public domain | W3C validator |