ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm Unicode version

Theorem caucvgprlemm 7851
Description: Lemma for caucvgpr 7865. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemm  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, j, s   
j, F, l    F, r    u, F, j    L, r    ph, j, s    s,
l
Allowed substitution hints:    ph( u, k, n, r, l)    A( u, k, n, r, l)    F( k, n, s)    L( u, j, k, n, s, l)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 fveq2 5626 . . . . . 6  |-  ( j  =  1o  ->  ( F `  j )  =  ( F `  1o ) )
21breq2d 4094 . . . . 5  |-  ( j  =  1o  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  1o ) ) )
3 caucvgpr.bnd . . . . 5  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 1pi 7498 . . . . . 6  |-  1o  e.  N.
54a1i 9 . . . . 5  |-  ( ph  ->  1o  e.  N. )
62, 3, 5rspcdva 2912 . . . 4  |-  ( ph  ->  A  <Q  ( F `  1o ) )
7 ltrelnq 7548 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
87brel 4770 . . . . 5  |-  ( A 
<Q  ( F `  1o )  ->  ( A  e. 
Q.  /\  ( F `  1o )  e.  Q. ) )
98simpld 112 . . . 4  |-  ( A 
<Q  ( F `  1o )  ->  A  e.  Q. )
10 halfnqq 7593 . . . 4  |-  ( A  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  =  A )
116, 9, 103syl 17 . . 3  |-  ( ph  ->  E. s  e.  Q.  ( s  +Q  s
)  =  A )
12 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  Q. )
13 archrecnq 7846 . . . . . . . 8  |-  ( s  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )
1412, 13syl 14 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s )
15 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s )
16 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  j  e.  N. )
17 nnnq 7605 . . . . . . . . . . . . . 14  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
18 recclnq 7575 . . . . . . . . . . . . . 14  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
1916, 17, 183syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
2012ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  s  e.  Q. )
21 ltanqg 7583 . . . . . . . . . . . . 13  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2219, 20, 20, 21syl3anc 1271 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s  <->  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s ) ) )
2315, 22mpbid 147 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s ) )
24 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  s )  =  A )
2523, 24breqtrd 4108 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  A )
26 rsp 2577 . . . . . . . . . . . . 13  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  ->  ( j  e.  N.  ->  A  <Q  ( F `  j ) ) )
273, 26syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( j  e.  N.  ->  A  <Q  ( F `  j ) ) )
2827ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
j  e.  N.  ->  A 
<Q  ( F `  j
) ) )
2916, 28mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  A  <Q  ( F `  j
) )
30 ltsonq 7581 . . . . . . . . . . 11  |-  <Q  Or  Q.
3130, 7sotri 5123 . . . . . . . . . 10  |-  ( ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  A  /\  A  <Q  ( F `  j
) )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3225, 29, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3332ex 115 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  <Q  s  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3433reximdva 2632 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( E. j  e. 
N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3514, 34mpd 13 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
36 oveq1 6007 . . . . . . . . 9  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
3736breq1d 4092 . . . . . . . 8  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3837rexbidv 2531 . . . . . . 7  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
39 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
4039fveq2i 5629 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
41 nqex 7546 . . . . . . . . . 10  |-  Q.  e.  _V
4241rabex 4227 . . . . . . . . 9  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
4341rabex 4227 . . . . . . . . 9  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
4442, 43op1st 6290 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
4540, 44eqtri 2250 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
4638, 45elrab2 2962 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4712, 35, 46sylanbrc 417 . . . . 5  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  ( 1st `  L ) )
4847ex 115 . . . 4  |-  ( (
ph  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  =  A  ->  s  e.  ( 1st `  L
) ) )
4948reximdva 2632 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  +Q  s )  =  A  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
5011, 49mpd 13 . 2  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
51 caucvgpr.f . . . . . 6  |-  ( ph  ->  F : N. --> Q. )
5251, 5ffvelcdmd 5770 . . . . 5  |-  ( ph  ->  ( F `  1o )  e.  Q. )
53 1nq 7549 . . . . 5  |-  1Q  e.  Q.
54 addclnq 7558 . . . . 5  |-  ( ( ( F `  1o )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1o )  +Q  1Q )  e. 
Q. )
5552, 53, 54sylancl 413 . . . 4  |-  ( ph  ->  ( ( F `  1o )  +Q  1Q )  e.  Q. )
56 addclnq 7558 . . . 4  |-  ( ( ( ( F `  1o )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( ( F `  1o )  +Q  1Q )  +Q  1Q )  e. 
Q. )
5755, 53, 56sylancl 413 . . 3  |-  ( ph  ->  ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  Q. )
58 df-1nqqs 7534 . . . . . . . . 9  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
5958fveq2i 5629 . . . . . . . 8  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
60 rec1nq 7578 . . . . . . . 8  |-  ( *Q
`  1Q )  =  1Q
6159, 60eqtr3i 2252 . . . . . . 7  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
6261oveq2i 6011 . . . . . 6  |-  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )  =  ( ( F `
 1o )  +Q  1Q )
63 ltaddnq 7590 . . . . . . 7  |-  ( ( ( ( F `  1o )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1o )  +Q  1Q )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) )
6455, 53, 63sylancl 413 . . . . . 6  |-  ( ph  ->  ( ( F `  1o )  +Q  1Q )  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
6562, 64eqbrtrid 4117 . . . . 5  |-  ( ph  ->  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
66 opeq1 3856 . . . . . . . . . 10  |-  ( j  =  1o  ->  <. j ,  1o >.  =  <. 1o ,  1o >. )
6766eceq1d 6714 . . . . . . . . 9  |-  ( j  =  1o  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
6867fveq2d 5630 . . . . . . . 8  |-  ( j  =  1o  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
691, 68oveq12d 6018 . . . . . . 7  |-  ( j  =  1o  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
7069breq1d 4092 . . . . . 6  |-  ( j  =  1o  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  <->  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7170rspcev 2907 . . . . 5  |-  ( ( 1o  e.  N.  /\  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
725, 65, 71syl2anc 411 . . . 4  |-  ( ph  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
73 breq2 4086 . . . . . 6  |-  ( u  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7473rexbidv 2531 . . . . 5  |-  ( u  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7539fveq2i 5629 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
7642, 43op2nd 6291 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
7775, 76eqtri 2250 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
7874, 77elrab2 2962 . . . 4  |-  ( ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  Q.  /\ 
E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) ) )
7957, 72, 78sylanbrc 417 . . 3  |-  ( ph  ->  ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) )
80 eleq1 2292 . . . 4  |-  ( r  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  (
r  e.  ( 2nd `  L )  <->  ( (
( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) ) )
8180rspcev 2907 . . 3  |-  ( ( ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  Q.  /\  (
( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
8257, 79, 81syl2anc 411 . 2  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
8350, 82jca 306 1  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   <.cop 3669   class class class wbr 4082   -->wf 5313   ` cfv 5317  (class class class)co 6000   1stc1st 6282   2ndc2nd 6283   1oc1o 6553   [cec 6676   N.cnpi 7455    <N clti 7458    ~Q ceq 7462   Q.cnq 7463   1Qc1q 7464    +Q cplq 7465   *Qcrq 7467    <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536
This theorem is referenced by:  caucvgprlemcl  7859
  Copyright terms: Public domain W3C validator