Proof of Theorem caucvgprlemm
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5558 |
. . . . . 6
           |
| 2 | 1 | breq2d 4045 |
. . . . 5
     
       |
| 3 | | caucvgpr.bnd |
. . . . 5
        |
| 4 | | 1pi 7382 |
. . . . . 6
 |
| 5 | 4 | a1i 9 |
. . . . 5
   |
| 6 | 2, 3, 5 | rspcdva 2873 |
. . . 4

      |
| 7 | | ltrelnq 7432 |
. . . . . 6
   |
| 8 | 7 | brel 4715 |
. . . . 5
     
       |
| 9 | 8 | simpld 112 |
. . . 4
       |
| 10 | | halfnqq 7477 |
. . . 4
      |
| 11 | 6, 9, 10 | 3syl 17 |
. . 3
      |
| 12 | | simplr 528 |
. . . . . 6
         |
| 13 | | archrecnq 7730 |
. . . . . . . 8
            |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
       
          |
| 15 | | simpr 110 |
. . . . . . . . . . . 12
                             |
| 16 | | simplr 528 |
. . . . . . . . . . . . . 14
                     |
| 17 | | nnnq 7489 |
. . . . . . . . . . . . . 14
        |
| 18 | | recclnq 7459 |
. . . . . . . . . . . . . 14
             
  |
| 19 | 16, 17, 18 | 3syl 17 |
. . . . . . . . . . . . 13
                             |
| 20 | 12 | ad2antrr 488 |
. . . . . . . . . . . . 13
                     |
| 21 | | ltanqg 7467 |
. . . . . . . . . . . . 13
         
                         |
| 22 | 19, 20, 20, 21 | syl3anc 1249 |
. . . . . . . . . . . 12
                                           |
| 23 | 15, 22 | mpbid 147 |
. . . . . . . . . . 11
                                 |
| 24 | | simpllr 534 |
. . . . . . . . . . 11
                       |
| 25 | 23, 24 | breqtrd 4059 |
. . . . . . . . . 10
                               |
| 26 | | rsp 2544 |
. . . . . . . . . . . . 13
 
   

       |
| 27 | 3, 26 | syl 14 |
. . . . . . . . . . . 12
 
       |
| 28 | 27 | ad4antr 494 |
. . . . . . . . . . 11
                           |
| 29 | 16, 28 | mpd 13 |
. . . . . . . . . 10
                         |
| 30 | | ltsonq 7465 |
. . . . . . . . . . 11
 |
| 31 | 30, 7 | sotri 5065 |
. . . . . . . . . 10
                                 |
| 32 | 25, 29, 31 | syl2anc 411 |
. . . . . . . . 9
                                   |
| 33 | 32 | ex 115 |
. . . . . . . 8
   
             
                 |
| 34 | 33 | reximdva 2599 |
. . . . . . 7
                
                  |
| 35 | 14, 34 | mpd 13 |
. . . . . 6
       
                |
| 36 | | oveq1 5929 |
. . . . . . . . 9
                       |
| 37 | 36 | breq1d 4043 |
. . . . . . . 8
               
                 |
| 38 | 37 | rexbidv 2498 |
. . . . . . 7
  
             
                  |
| 39 | | caucvgpr.lim |
. . . . . . . . 9
                   
                  |
| 40 | 39 | fveq2i 5561 |
. . . . . . . 8
         
                
                   |
| 41 | | nqex 7430 |
. . . . . . . . . 10
 |
| 42 | 41 | rabex 4177 |
. . . . . . . . 9
 
                |
| 43 | 41 | rabex 4177 |
. . . . . . . . 9
                
 |
| 44 | 42, 43 | op1st 6204 |
. . . . . . . 8
                       
                                   |
| 45 | 40, 44 | eqtri 2217 |
. . . . . . 7
     
                |
| 46 | 38, 45 | elrab2 2923 |
. . . . . 6
     
                  |
| 47 | 12, 35, 46 | sylanbrc 417 |
. . . . 5
             |
| 48 | 47 | ex 115 |
. . . 4
 

          |
| 49 | 48 | reximdva 2599 |
. . 3
     
       |
| 50 | 11, 49 | mpd 13 |
. 2
 
      |
| 51 | | caucvgpr.f |
. . . . . 6
       |
| 52 | 51, 5 | ffvelcdmd 5698 |
. . . . 5
    
  |
| 53 | | 1nq 7433 |
. . . . 5
 |
| 54 | | addclnq 7442 |
. . . . 5
     
         |
| 55 | 52, 53, 54 | sylancl 413 |
. . . 4
     

  |
| 56 | | addclnq 7442 |
. . . 4
      

      
    |
| 57 | 55, 53, 56 | sylancl 413 |
. . 3
        
  |
| 58 | | df-1nqqs 7418 |
. . . . . . . . 9
      |
| 59 | 58 | fveq2i 5561 |
. . . . . . . 8
             |
| 60 | | rec1nq 7462 |
. . . . . . . 8
     |
| 61 | 59, 60 | eqtr3i 2219 |
. . . . . . 7
         |
| 62 | 61 | oveq2i 5933 |
. . . . . 6
                     |
| 63 | | ltaddnq 7474 |
. . . . . . 7
      

                 |
| 64 | 55, 53, 63 | sylancl 413 |
. . . . . 6
     
           |
| 65 | 62, 64 | eqbrtrid 4068 |
. . . . 5
     
                   |
| 66 | | opeq1 3808 |
. . . . . . . . . 10
   
     |
| 67 | 66 | eceq1d 6628 |
. . . . . . . . 9
            |
| 68 | 67 | fveq2d 5562 |
. . . . . . . 8
                   |
| 69 | 1, 68 | oveq12d 5940 |
. . . . . . 7
                               |
| 70 | 69 | breq1d 4043 |
. . . . . 6
                       
                         |
| 71 | 70 | rspcev 2868 |
. . . . 5
      
                  
                        |
| 72 | 5, 65, 71 | syl2anc 411 |
. . . 4
                          |
| 73 | | breq2 4037 |
. . . . . 6
                       
                         |
| 74 | 73 | rexbidv 2498 |
. . . . 5
          
             
                          |
| 75 | 39 | fveq2i 5561 |
. . . . . 6
         
                
                   |
| 76 | 42, 43 | op2nd 6205 |
. . . . . 6
                       
                                   |
| 77 | 75, 76 | eqtri 2217 |
. . . . 5
     
                |
| 78 | 74, 77 | elrab2 2923 |
. . . 4
      
                                         |
| 79 | 57, 72, 78 | sylanbrc 417 |
. . 3
        
      |
| 80 | | eleq1 2259 |
. . . 4
             
               |
| 81 | 80 | rspcev 2868 |
. . 3
         
     
              |
| 82 | 57, 79, 81 | syl2anc 411 |
. 2
 
      |
| 83 | 50, 82 | jca 306 |
1
               |