ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm Unicode version

Theorem caucvgprlemm 7696
Description: Lemma for caucvgpr 7710. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemm  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, j, s   
j, F, l    F, r    u, F, j    L, r    ph, j, s    s,
l
Allowed substitution hints:    ph( u, k, n, r, l)    A( u, k, n, r, l)    F( k, n, s)    L( u, j, k, n, s, l)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 fveq2 5534 . . . . . 6  |-  ( j  =  1o  ->  ( F `  j )  =  ( F `  1o ) )
21breq2d 4030 . . . . 5  |-  ( j  =  1o  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  1o ) ) )
3 caucvgpr.bnd . . . . 5  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 1pi 7343 . . . . . 6  |-  1o  e.  N.
54a1i 9 . . . . 5  |-  ( ph  ->  1o  e.  N. )
62, 3, 5rspcdva 2861 . . . 4  |-  ( ph  ->  A  <Q  ( F `  1o ) )
7 ltrelnq 7393 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
87brel 4696 . . . . 5  |-  ( A 
<Q  ( F `  1o )  ->  ( A  e. 
Q.  /\  ( F `  1o )  e.  Q. ) )
98simpld 112 . . . 4  |-  ( A 
<Q  ( F `  1o )  ->  A  e.  Q. )
10 halfnqq 7438 . . . 4  |-  ( A  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  =  A )
116, 9, 103syl 17 . . 3  |-  ( ph  ->  E. s  e.  Q.  ( s  +Q  s
)  =  A )
12 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  Q. )
13 archrecnq 7691 . . . . . . . 8  |-  ( s  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )
1412, 13syl 14 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s )
15 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s )
16 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  j  e.  N. )
17 nnnq 7450 . . . . . . . . . . . . . 14  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
18 recclnq 7420 . . . . . . . . . . . . . 14  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
1916, 17, 183syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
2012ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  s  e.  Q. )
21 ltanqg 7428 . . . . . . . . . . . . 13  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2219, 20, 20, 21syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s  <->  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s ) ) )
2315, 22mpbid 147 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s ) )
24 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  s )  =  A )
2523, 24breqtrd 4044 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  A )
26 rsp 2537 . . . . . . . . . . . . 13  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  ->  ( j  e.  N.  ->  A  <Q  ( F `  j ) ) )
273, 26syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( j  e.  N.  ->  A  <Q  ( F `  j ) ) )
2827ad4antr 494 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
j  e.  N.  ->  A 
<Q  ( F `  j
) ) )
2916, 28mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  A  <Q  ( F `  j
) )
30 ltsonq 7426 . . . . . . . . . . 11  |-  <Q  Or  Q.
3130, 7sotri 5042 . . . . . . . . . 10  |-  ( ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  A  /\  A  <Q  ( F `  j
) )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3225, 29, 31syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3332ex 115 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  <Q  s  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3433reximdva 2592 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( E. j  e. 
N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3514, 34mpd 13 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
36 oveq1 5902 . . . . . . . . 9  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
3736breq1d 4028 . . . . . . . 8  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3837rexbidv 2491 . . . . . . 7  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
39 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
4039fveq2i 5537 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
41 nqex 7391 . . . . . . . . . 10  |-  Q.  e.  _V
4241rabex 4162 . . . . . . . . 9  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
4341rabex 4162 . . . . . . . . 9  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
4442, 43op1st 6170 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
4540, 44eqtri 2210 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
4638, 45elrab2 2911 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4712, 35, 46sylanbrc 417 . . . . 5  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  ( 1st `  L ) )
4847ex 115 . . . 4  |-  ( (
ph  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  =  A  ->  s  e.  ( 1st `  L
) ) )
4948reximdva 2592 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  +Q  s )  =  A  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
5011, 49mpd 13 . 2  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
51 caucvgpr.f . . . . . 6  |-  ( ph  ->  F : N. --> Q. )
5251, 5ffvelcdmd 5672 . . . . 5  |-  ( ph  ->  ( F `  1o )  e.  Q. )
53 1nq 7394 . . . . 5  |-  1Q  e.  Q.
54 addclnq 7403 . . . . 5  |-  ( ( ( F `  1o )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1o )  +Q  1Q )  e. 
Q. )
5552, 53, 54sylancl 413 . . . 4  |-  ( ph  ->  ( ( F `  1o )  +Q  1Q )  e.  Q. )
56 addclnq 7403 . . . 4  |-  ( ( ( ( F `  1o )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( ( F `  1o )  +Q  1Q )  +Q  1Q )  e. 
Q. )
5755, 53, 56sylancl 413 . . 3  |-  ( ph  ->  ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  Q. )
58 df-1nqqs 7379 . . . . . . . . 9  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
5958fveq2i 5537 . . . . . . . 8  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
60 rec1nq 7423 . . . . . . . 8  |-  ( *Q
`  1Q )  =  1Q
6159, 60eqtr3i 2212 . . . . . . 7  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
6261oveq2i 5906 . . . . . 6  |-  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )  =  ( ( F `
 1o )  +Q  1Q )
63 ltaddnq 7435 . . . . . . 7  |-  ( ( ( ( F `  1o )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1o )  +Q  1Q )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) )
6455, 53, 63sylancl 413 . . . . . 6  |-  ( ph  ->  ( ( F `  1o )  +Q  1Q )  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
6562, 64eqbrtrid 4053 . . . . 5  |-  ( ph  ->  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
66 opeq1 3793 . . . . . . . . . 10  |-  ( j  =  1o  ->  <. j ,  1o >.  =  <. 1o ,  1o >. )
6766eceq1d 6594 . . . . . . . . 9  |-  ( j  =  1o  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
6867fveq2d 5538 . . . . . . . 8  |-  ( j  =  1o  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
691, 68oveq12d 5913 . . . . . . 7  |-  ( j  =  1o  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
7069breq1d 4028 . . . . . 6  |-  ( j  =  1o  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  <->  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7170rspcev 2856 . . . . 5  |-  ( ( 1o  e.  N.  /\  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
725, 65, 71syl2anc 411 . . . 4  |-  ( ph  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
73 breq2 4022 . . . . . 6  |-  ( u  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7473rexbidv 2491 . . . . 5  |-  ( u  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7539fveq2i 5537 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
7642, 43op2nd 6171 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
7775, 76eqtri 2210 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
7874, 77elrab2 2911 . . . 4  |-  ( ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  Q.  /\ 
E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) ) )
7957, 72, 78sylanbrc 417 . . 3  |-  ( ph  ->  ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) )
80 eleq1 2252 . . . 4  |-  ( r  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  (
r  e.  ( 2nd `  L )  <->  ( (
( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) ) )
8180rspcev 2856 . . 3  |-  ( ( ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  Q.  /\  (
( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
8257, 79, 81syl2anc 411 . 2  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
8350, 82jca 306 1  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   {crab 2472   <.cop 3610   class class class wbr 4018   -->wf 5231   ` cfv 5235  (class class class)co 5895   1stc1st 6162   2ndc2nd 6163   1oc1o 6433   [cec 6556   N.cnpi 7300    <N clti 7303    ~Q ceq 7307   Q.cnq 7308   1Qc1q 7309    +Q cplq 7310   *Qcrq 7312    <Q cltq 7313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-1o 6440  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-qs 6564  df-ni 7332  df-pli 7333  df-mi 7334  df-lti 7335  df-plpq 7372  df-mpq 7373  df-enq 7375  df-nqqs 7376  df-plqqs 7377  df-mqqs 7378  df-1nqqs 7379  df-rq 7380  df-ltnqqs 7381
This theorem is referenced by:  caucvgprlemcl  7704
  Copyright terms: Public domain W3C validator