| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaffng | GIF version | ||
| Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| Ref | Expression |
|---|---|
| scaffng | ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vscaslid 13204 | . . . . . . 7 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 13067 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → ( ·𝑠 ‘𝑊) ∈ V) |
| 4 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑦 ∈ V) |
| 6 | ovexg 6041 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ( ·𝑠 ‘𝑊) ∈ V ∧ 𝑦 ∈ V) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) | |
| 7 | 1, 3, 5, 6 | mp3an2i 1376 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 8 | 7 | ralrimivw 2604 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 9 | 8 | ralrimivw 2604 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 10 | eqid 2229 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
| 11 | 10 | fnmpo 6354 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 12 | 9, 11 | syl 14 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 13 | scaffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 14 | scaffval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 15 | scaffval.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 16 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 17 | eqid 2229 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 18 | 13, 14, 15, 16, 17 | scaffvalg 14278 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
| 19 | 18 | fneq1d 5411 | . 2 ⊢ (𝑊 ∈ 𝑉 → ( ∙ Fn (𝐾 × 𝐵) ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵))) |
| 20 | 12, 19 | mpbird 167 | 1 ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 × cxp 4717 Fn wfn 5313 ‘cfv 5318 (class class class)co 6007 ∈ cmpo 6009 Basecbs 13040 Scalarcsca 13121 ·𝑠 cvsca 13122 ·sf cscaf 14260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-ndx 13043 df-slot 13044 df-base 13046 df-sca 13134 df-vsca 13135 df-scaf 14262 |
| This theorem is referenced by: lmodfopnelem1 14296 |
| Copyright terms: Public domain | W3C validator |