![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > scaffng | GIF version |
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
Ref | Expression |
---|---|
scaffng | ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | vscaslid 12780 | . . . . . . 7 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12645 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → ( ·𝑠 ‘𝑊) ∈ V) |
4 | vex 2763 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑦 ∈ V) |
6 | ovexg 5952 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ( ·𝑠 ‘𝑊) ∈ V ∧ 𝑦 ∈ V) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) | |
7 | 1, 3, 5, 6 | mp3an2i 1353 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
8 | 7 | ralrimivw 2568 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
9 | 8 | ralrimivw 2568 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
10 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
11 | 10 | fnmpo 6255 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
12 | 9, 11 | syl 14 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
13 | scaffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
14 | scaffval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
15 | scaffval.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
16 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
17 | eqid 2193 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
18 | 13, 14, 15, 16, 17 | scaffvalg 13802 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
19 | 18 | fneq1d 5344 | . 2 ⊢ (𝑊 ∈ 𝑉 → ( ∙ Fn (𝐾 × 𝐵) ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵))) |
20 | 12, 19 | mpbird 167 | 1 ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 × cxp 4657 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 ∈ cmpo 5920 Basecbs 12618 Scalarcsca 12698 ·𝑠 cvsca 12699 ·sf cscaf 13784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-ndx 12621 df-slot 12622 df-base 12624 df-sca 12711 df-vsca 12712 df-scaf 13786 |
This theorem is referenced by: lmodfopnelem1 13820 |
Copyright terms: Public domain | W3C validator |