| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaffng | GIF version | ||
| Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| Ref | Expression |
|---|---|
| scaffng | ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2782 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vscaslid 13162 | . . . . . . 7 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 13025 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → ( ·𝑠 ‘𝑊) ∈ V) |
| 4 | vex 2782 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑦 ∈ V) |
| 6 | ovexg 6008 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ( ·𝑠 ‘𝑊) ∈ V ∧ 𝑦 ∈ V) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) | |
| 7 | 1, 3, 5, 6 | mp3an2i 1357 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 8 | 7 | ralrimivw 2584 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 9 | 8 | ralrimivw 2584 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 10 | eqid 2209 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
| 11 | 10 | fnmpo 6318 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 12 | 9, 11 | syl 14 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 13 | scaffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 14 | scaffval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 15 | scaffval.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 16 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 17 | eqid 2209 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 18 | 13, 14, 15, 16, 17 | scaffvalg 14235 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
| 19 | 18 | fneq1d 5387 | . 2 ⊢ (𝑊 ∈ 𝑉 → ( ∙ Fn (𝐾 × 𝐵) ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵))) |
| 20 | 12, 19 | mpbird 167 | 1 ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 × cxp 4694 Fn wfn 5289 ‘cfv 5294 (class class class)co 5974 ∈ cmpo 5976 Basecbs 12998 Scalarcsca 13079 ·𝑠 cvsca 13080 ·sf cscaf 14217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-ndx 13001 df-slot 13002 df-base 13004 df-sca 13092 df-vsca 13093 df-scaf 14219 |
| This theorem is referenced by: lmodfopnelem1 14253 |
| Copyright terms: Public domain | W3C validator |