ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffng GIF version

Theorem scaffng 14281
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
Assertion
Ref Expression
scaffng (𝑊𝑉 Fn (𝐾 × 𝐵))

Proof of Theorem scaffng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . 6 𝑥 ∈ V
2 vscaslid 13204 . . . . . . 7 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
32slotex 13067 . . . . . 6 (𝑊𝑉 → ( ·𝑠𝑊) ∈ V)
4 vex 2802 . . . . . . 7 𝑦 ∈ V
54a1i 9 . . . . . 6 (𝑊𝑉𝑦 ∈ V)
6 ovexg 6041 . . . . . 6 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑦 ∈ V) → (𝑥( ·𝑠𝑊)𝑦) ∈ V)
71, 3, 5, 6mp3an2i 1376 . . . . 5 (𝑊𝑉 → (𝑥( ·𝑠𝑊)𝑦) ∈ V)
87ralrimivw 2604 . . . 4 (𝑊𝑉 → ∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ V)
98ralrimivw 2604 . . 3 (𝑊𝑉 → ∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ V)
10 eqid 2229 . . . 4 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦))
1110fnmpo 6354 . . 3 (∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) Fn (𝐾 × 𝐵))
129, 11syl 14 . 2 (𝑊𝑉 → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) Fn (𝐾 × 𝐵))
13 scaffval.b . . . 4 𝐵 = (Base‘𝑊)
14 scaffval.f . . . 4 𝐹 = (Scalar‘𝑊)
15 scaffval.k . . . 4 𝐾 = (Base‘𝐹)
16 scaffval.a . . . 4 = ( ·sf𝑊)
17 eqid 2229 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1813, 14, 15, 16, 17scaffvalg 14278 . . 3 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)))
1918fneq1d 5411 . 2 (𝑊𝑉 → ( Fn (𝐾 × 𝐵) ↔ (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) Fn (𝐾 × 𝐵)))
2012, 19mpbird 167 1 (𝑊𝑉 Fn (𝐾 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799   × cxp 4717   Fn wfn 5313  cfv 5318  (class class class)co 6007  cmpo 6009  Basecbs 13040  Scalarcsca 13121   ·𝑠 cvsca 13122   ·sf cscaf 14260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-ndx 13043  df-slot 13044  df-base 13046  df-sca 13134  df-vsca 13135  df-scaf 14262
This theorem is referenced by:  lmodfopnelem1  14296
  Copyright terms: Public domain W3C validator