| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaffng | GIF version | ||
| Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| Ref | Expression |
|---|---|
| scaffng | ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vscaslid 13039 | . . . . . . 7 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12903 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → ( ·𝑠 ‘𝑊) ∈ V) |
| 4 | vex 2776 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑦 ∈ V) |
| 6 | ovexg 5985 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ( ·𝑠 ‘𝑊) ∈ V ∧ 𝑦 ∈ V) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) | |
| 7 | 1, 3, 5, 6 | mp3an2i 1355 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 8 | 7 | ralrimivw 2581 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 9 | 8 | ralrimivw 2581 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 10 | eqid 2206 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
| 11 | 10 | fnmpo 6295 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 12 | 9, 11 | syl 14 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 13 | scaffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 14 | scaffval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 15 | scaffval.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 16 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 17 | eqid 2206 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 18 | 13, 14, 15, 16, 17 | scaffvalg 14112 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
| 19 | 18 | fneq1d 5369 | . 2 ⊢ (𝑊 ∈ 𝑉 → ( ∙ Fn (𝐾 × 𝐵) ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵))) |
| 20 | 12, 19 | mpbird 167 | 1 ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 × cxp 4677 Fn wfn 5271 ‘cfv 5276 (class class class)co 5951 ∈ cmpo 5953 Basecbs 12876 Scalarcsca 12956 ·𝑠 cvsca 12957 ·sf cscaf 14094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-ndx 12879 df-slot 12880 df-base 12882 df-sca 12969 df-vsca 12970 df-scaf 14096 |
| This theorem is referenced by: lmodfopnelem1 14130 |
| Copyright terms: Public domain | W3C validator |