| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaffng | GIF version | ||
| Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
| scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
| scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
| Ref | Expression |
|---|---|
| scaffng | ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vscaslid 12840 | . . . . . . 7 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12705 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → ( ·𝑠 ‘𝑊) ∈ V) |
| 4 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝑊 ∈ 𝑉 → 𝑦 ∈ V) |
| 6 | ovexg 5956 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ( ·𝑠 ‘𝑊) ∈ V ∧ 𝑦 ∈ V) → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) | |
| 7 | 1, 3, 5, 6 | mp3an2i 1353 | . . . . 5 ⊢ (𝑊 ∈ 𝑉 → (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 8 | 7 | ralrimivw 2571 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 9 | 8 | ralrimivw 2571 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V) |
| 10 | eqid 2196 | . . . 4 ⊢ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) | |
| 11 | 10 | fnmpo 6260 | . . 3 ⊢ (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐵 (𝑥( ·𝑠 ‘𝑊)𝑦) ∈ V → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 12 | 9, 11 | syl 14 | . 2 ⊢ (𝑊 ∈ 𝑉 → (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵)) |
| 13 | scaffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 14 | scaffval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 15 | scaffval.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 16 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
| 17 | eqid 2196 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 18 | 13, 14, 15, 16, 17 | scaffvalg 13862 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦))) |
| 19 | 18 | fneq1d 5348 | . 2 ⊢ (𝑊 ∈ 𝑉 → ( ∙ Fn (𝐾 × 𝐵) ↔ (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥( ·𝑠 ‘𝑊)𝑦)) Fn (𝐾 × 𝐵))) |
| 20 | 12, 19 | mpbird 167 | 1 ⊢ (𝑊 ∈ 𝑉 → ∙ Fn (𝐾 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 × cxp 4661 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 ∈ cmpo 5924 Basecbs 12678 Scalarcsca 12758 ·𝑠 cvsca 12759 ·sf cscaf 13844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-sca 12771 df-vsca 12772 df-scaf 13846 |
| This theorem is referenced by: lmodfopnelem1 13880 |
| Copyright terms: Public domain | W3C validator |