ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffng GIF version

Theorem scaffng 13404
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐡 = (Baseβ€˜π‘Š)
scaffval.f 𝐹 = (Scalarβ€˜π‘Š)
scaffval.k 𝐾 = (Baseβ€˜πΉ)
scaffval.a βˆ™ = ( Β·sf β€˜π‘Š)
Assertion
Ref Expression
scaffng (π‘Š ∈ 𝑉 β†’ βˆ™ Fn (𝐾 Γ— 𝐡))

Proof of Theorem scaffng
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . . . 6 π‘₯ ∈ V
2 vscaslid 12623 . . . . . . 7 ( ·𝑠 = Slot ( ·𝑠 β€˜ndx) ∧ ( ·𝑠 β€˜ndx) ∈ β„•)
32slotex 12491 . . . . . 6 (π‘Š ∈ 𝑉 β†’ ( ·𝑠 β€˜π‘Š) ∈ V)
4 vex 2742 . . . . . . 7 𝑦 ∈ V
54a1i 9 . . . . . 6 (π‘Š ∈ 𝑉 β†’ 𝑦 ∈ V)
6 ovexg 5911 . . . . . 6 ((π‘₯ ∈ V ∧ ( ·𝑠 β€˜π‘Š) ∈ V ∧ 𝑦 ∈ V) β†’ (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ V)
71, 3, 5, 6mp3an2i 1342 . . . . 5 (π‘Š ∈ 𝑉 β†’ (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ V)
87ralrimivw 2551 . . . 4 (π‘Š ∈ 𝑉 β†’ βˆ€π‘¦ ∈ 𝐡 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ V)
98ralrimivw 2551 . . 3 (π‘Š ∈ 𝑉 β†’ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐡 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ V)
10 eqid 2177 . . . 4 (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦)) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦))
1110fnmpo 6205 . . 3 (βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐡 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ V β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦)) Fn (𝐾 Γ— 𝐡))
129, 11syl 14 . 2 (π‘Š ∈ 𝑉 β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦)) Fn (𝐾 Γ— 𝐡))
13 scaffval.b . . . 4 𝐡 = (Baseβ€˜π‘Š)
14 scaffval.f . . . 4 𝐹 = (Scalarβ€˜π‘Š)
15 scaffval.k . . . 4 𝐾 = (Baseβ€˜πΉ)
16 scaffval.a . . . 4 βˆ™ = ( Β·sf β€˜π‘Š)
17 eqid 2177 . . . 4 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
1813, 14, 15, 16, 17scaffvalg 13401 . . 3 (π‘Š ∈ 𝑉 β†’ βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦)))
1918fneq1d 5308 . 2 (π‘Š ∈ 𝑉 β†’ ( βˆ™ Fn (𝐾 Γ— 𝐡) ↔ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦)) Fn (𝐾 Γ— 𝐡)))
2012, 19mpbird 167 1 (π‘Š ∈ 𝑉 β†’ βˆ™ Fn (𝐾 Γ— 𝐡))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2739   Γ— cxp 4626   Fn wfn 5213  β€˜cfv 5218  (class class class)co 5877   ∈ cmpo 5879  Basecbs 12464  Scalarcsca 12541   ·𝑠 cvsca 12542   Β·sf cscaf 13383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sca 12554  df-vsca 12555  df-scaf 13385
This theorem is referenced by:  lmodfopnelem1  13419
  Copyright terms: Public domain W3C validator