ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffng GIF version

Theorem scaffng 13622
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
Assertion
Ref Expression
scaffng (𝑊𝑉 Fn (𝐾 × 𝐵))

Proof of Theorem scaffng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . . 6 𝑥 ∈ V
2 vscaslid 12671 . . . . . . 7 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
32slotex 12538 . . . . . 6 (𝑊𝑉 → ( ·𝑠𝑊) ∈ V)
4 vex 2755 . . . . . . 7 𝑦 ∈ V
54a1i 9 . . . . . 6 (𝑊𝑉𝑦 ∈ V)
6 ovexg 5929 . . . . . 6 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑦 ∈ V) → (𝑥( ·𝑠𝑊)𝑦) ∈ V)
71, 3, 5, 6mp3an2i 1353 . . . . 5 (𝑊𝑉 → (𝑥( ·𝑠𝑊)𝑦) ∈ V)
87ralrimivw 2564 . . . 4 (𝑊𝑉 → ∀𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ V)
98ralrimivw 2564 . . 3 (𝑊𝑉 → ∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ V)
10 eqid 2189 . . . 4 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦))
1110fnmpo 6226 . . 3 (∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) Fn (𝐾 × 𝐵))
129, 11syl 14 . 2 (𝑊𝑉 → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) Fn (𝐾 × 𝐵))
13 scaffval.b . . . 4 𝐵 = (Base‘𝑊)
14 scaffval.f . . . 4 𝐹 = (Scalar‘𝑊)
15 scaffval.k . . . 4 𝐾 = (Base‘𝐹)
16 scaffval.a . . . 4 = ( ·sf𝑊)
17 eqid 2189 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
1813, 14, 15, 16, 17scaffvalg 13619 . . 3 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)))
1918fneq1d 5325 . 2 (𝑊𝑉 → ( Fn (𝐾 × 𝐵) ↔ (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦)) Fn (𝐾 × 𝐵)))
2012, 19mpbird 167 1 (𝑊𝑉 Fn (𝐾 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752   × cxp 4642   Fn wfn 5230  cfv 5235  (class class class)co 5895  cmpo 5897  Basecbs 12511  Scalarcsca 12589   ·𝑠 cvsca 12590   ·sf cscaf 13601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-ndx 12514  df-slot 12515  df-base 12517  df-sca 12602  df-vsca 12603  df-scaf 13603
This theorem is referenced by:  lmodfopnelem1  13637
  Copyright terms: Public domain W3C validator