ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngpropd Unicode version

Theorem rngpropd 13913
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
rngpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
rngpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
rngpropd  |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem rngpropd
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  ph )
2 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  u  e.  B )
3 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  K  e.  Abel )
4 simprlr 538 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  v  e.  B )
5 rngpropd.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  =  ( Base `  K ) )
65ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  B  =  ( Base `  K
) )
74, 6eleqtrd 2308 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  v  e.  ( Base `  K
) )
8 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  w  e.  B )
98, 6eleqtrd 2308 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  w  e.  ( Base `  K
) )
10 ablgrp 13821 . . . . . . . . . . . . . . . 16  |-  ( K  e.  Abel  ->  K  e. 
Grp )
11 eqid 2229 . . . . . . . . . . . . . . . . 17  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2229 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  K )  =  ( +g  `  K )
1311, 12grpcl 13536 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Grp  /\  v  e.  ( Base `  K )  /\  w  e.  ( Base `  K
) )  ->  (
v ( +g  `  K
) w )  e.  ( Base `  K
) )
1410, 13syl3an1 1304 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Abel  /\  v  e.  ( Base `  K
)  /\  w  e.  ( Base `  K )
)  ->  ( v
( +g  `  K ) w )  e.  (
Base `  K )
)
153, 7, 9, 14syl3anc 1271 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  K
) w )  e.  ( Base `  K
) )
1615, 6eleqtrrd 2309 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  K
) w )  e.  B )
17 rngpropd.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
1817oveqrspc2v 6027 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  B  /\  (
v ( +g  `  K
) w )  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
191, 2, 16, 18syl12anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
20 rngpropd.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
2120oveqrspc2v 6027 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  =  ( v ( +g  `  L ) w ) )
221, 4, 8, 21syl12anc 1269 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  K
) w )  =  ( v ( +g  `  L ) w ) )
2322oveq2d 6016 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  L ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
2419, 23eqtrd 2262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
25 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (mulGrp `  K )  e. Smgrp )
262, 6eleqtrd 2308 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  u  e.  ( Base `  K
) )
273elexd 2813 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  K  e.  _V )
28 eqid 2229 . . . . . . . . . . . . . . . . . . 19  |-  (mulGrp `  K )  =  (mulGrp `  K )
2928, 11mgpbasg 13884 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  _V  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
3027, 29syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
3126, 30eleqtrd 2308 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  u  e.  ( Base `  (mulGrp `  K ) ) )
327, 30eleqtrd 2308 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  v  e.  ( Base `  (mulGrp `  K ) ) )
33 eqid 2229 . . . . . . . . . . . . . . . . 17  |-  ( Base `  (mulGrp `  K )
)  =  ( Base `  (mulGrp `  K )
)
34 eqid 2229 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  (mulGrp `  K )
)  =  ( +g  `  (mulGrp `  K )
)
3533, 34sgrpcl 13437 . . . . . . . . . . . . . . . 16  |-  ( ( (mulGrp `  K )  e. Smgrp  /\  u  e.  (
Base `  (mulGrp `  K
) )  /\  v  e.  ( Base `  (mulGrp `  K ) ) )  ->  ( u ( +g  `  (mulGrp `  K ) ) v )  e.  ( Base `  (mulGrp `  K )
) )
3625, 31, 32, 35syl3anc 1271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  (mulGrp `  K ) ) v )  e.  ( Base `  (mulGrp `  K )
) )
37 eqid 2229 . . . . . . . . . . . . . . . . . 18  |-  ( .r
`  K )  =  ( .r `  K
)
3828, 37mgpplusgg 13882 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  _V  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
3927, 38syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
4039oveqd 6017 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  =  ( u ( +g  `  (mulGrp `  K ) ) v ) )
4136, 40, 303eltr4d 2313 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  e.  ( Base `  K
) )
4241, 6eleqtrrd 2309 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  e.  B )
439, 30eleqtrd 2308 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  w  e.  ( Base `  (mulGrp `  K ) ) )
4433, 34sgrpcl 13437 . . . . . . . . . . . . . . . 16  |-  ( ( (mulGrp `  K )  e. Smgrp  /\  u  e.  (
Base `  (mulGrp `  K
) )  /\  w  e.  ( Base `  (mulGrp `  K ) ) )  ->  ( u ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
4525, 31, 43, 44syl3anc 1271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
4639oveqd 6017 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  =  ( u ( +g  `  (mulGrp `  K ) ) w ) )
4745, 46, 303eltr4d 2313 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  e.  ( Base `  K
) )
4847, 6eleqtrrd 2309 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  e.  B )
4920oveqrspc2v 6027 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) v )  e.  B  /\  (
u ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) v ) ( +g  `  L
) ( u ( .r `  K ) w ) ) )
501, 42, 48, 49syl12anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  L ) ( u ( .r `  K
) w ) ) )
5117oveqrspc2v 6027 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( .r
`  K ) v )  =  ( u ( .r `  L
) v ) )
5251ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  =  ( u ( .r `  L ) v ) )
5317oveqrspc2v 6027 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  =  ( u ( .r `  L
) w ) )
541, 2, 8, 53syl12anc 1269 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  =  ( u ( .r `  L ) w ) )
5552, 54oveq12d 6018 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) v ) ( +g  `  L
) ( u ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) )
5650, 55eqtrd 2262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) )
5724, 56eqeq12d 2244 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  <->  ( u
( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) ) )
5811, 12grpcl 13536 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Grp  /\  u  e.  ( Base `  K )  /\  v  e.  ( Base `  K
) )  ->  (
u ( +g  `  K
) v )  e.  ( Base `  K
) )
5910, 58syl3an1 1304 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Abel  /\  u  e.  ( Base `  K
)  /\  v  e.  ( Base `  K )
)  ->  ( u
( +g  `  K ) v )  e.  (
Base `  K )
)
603, 26, 7, 59syl3anc 1271 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  K
) v )  e.  ( Base `  K
) )
6160, 6eleqtrrd 2309 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  K
) v )  e.  B )
6217oveqrspc2v 6027 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( +g  `  K
) v )  e.  B  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  K
) v ) ( .r `  L ) w ) )
631, 61, 8, 62syl12anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( +g  `  K ) v ) ( .r
`  L ) w ) )
6420oveqrspc2v 6027 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
6564ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  K
) v )  =  ( u ( +g  `  L ) v ) )
6665oveq1d 6015 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( +g  `  K ) v ) ( .r `  L
) w )  =  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w ) )
6763, 66eqtrd 2262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w ) )
6833, 34sgrpcl 13437 . . . . . . . . . . . . . . . 16  |-  ( ( (mulGrp `  K )  e. Smgrp  /\  v  e.  (
Base `  (mulGrp `  K
) )  /\  w  e.  ( Base `  (mulGrp `  K ) ) )  ->  ( v ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
6925, 32, 43, 68syl3anc 1271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
7039oveqd 6017 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  =  ( v ( +g  `  (mulGrp `  K ) ) w ) )
7169, 70, 303eltr4d 2313 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  e.  ( Base `  K
) )
7271, 6eleqtrrd 2309 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  e.  B )
7320oveqrspc2v 6027 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) w )  e.  B  /\  (
v ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) w ) ( +g  `  K ) ( v ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) w ) ( +g  `  L
) ( v ( .r `  K ) w ) ) )
741, 48, 72, 73syl12anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  =  ( ( u ( .r `  K ) w ) ( +g  `  L ) ( v ( .r `  K
) w ) ) )
7517oveqrspc2v 6027 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  =  ( v ( .r `  L
) w ) )
761, 4, 8, 75syl12anc 1269 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  =  ( v ( .r `  L ) w ) )
7754, 76oveq12d 6018 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) w ) ( +g  `  L
) ( v ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) )
7874, 77eqtrd 2262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) )
7967, 78eqeq12d 2244 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  <->  ( (
u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )
8057, 79anbi12d 473 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
8180anassrs 400 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp ) )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
8281ralbidva 2526 . . . . . . 7  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
83822ralbidva 2552 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
845adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  B  =  ( Base `  K ) )
8584raleqdv 2734 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. w  e.  ( Base `  K ) ( ( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
8684, 85raleqbidv 2744 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
8784, 86raleqbidv 2744 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
88 rngpropd.2 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  L ) )
8988adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  B  =  ( Base `  L ) )
9089raleqdv 2734 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. w  e.  B  ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. w  e.  ( Base `  L ) ( ( u ( .r
`  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
9189, 90raleqbidv 2744 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
9289, 91raleqbidv 2744 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
9383, 87, 923bitr3d 218 . . . . 5  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
9493pm5.32da 452 . . . 4  |-  ( ph  ->  ( ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) )  <->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) ) )
95 df-3an 1004 . . . 4  |-  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
96 df-3an 1004 . . . 4  |-  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
9794, 95, 963bitr4g 223 . . 3  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
98 simp1 1021 . . . . 5  |-  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  K  e.  Abel )
9998a1i 9 . . . 4  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  K  e.  Abel ) )
100 simp1 1021 . . . . 5  |-  ( ( L  e.  Abel  /\  (mulGrp `  L )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  L  e.  Abel )
1015, 88, 20ablpropd 13828 . . . . 5  |-  ( ph  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
102100, 101imbitrrid 156 . . . 4  |-  ( ph  ->  ( ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  K  e.  Abel ) )
103101adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  Abel )  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
10428mgpex 13883 . . . . . . . 8  |-  ( K  e.  Abel  ->  (mulGrp `  K )  e.  _V )
105104adantl 277 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  (mulGrp `  K
)  e.  _V )
106101biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  L  e.  Abel )
107 eqid 2229 . . . . . . . . 9  |-  (mulGrp `  L )  =  (mulGrp `  L )
108107mgpex 13883 . . . . . . . 8  |-  ( L  e.  Abel  ->  (mulGrp `  L )  e.  _V )
109106, 108syl 14 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  (mulGrp `  L
)  e.  _V )
110 elex 2811 . . . . . . . . 9  |-  ( K  e.  Abel  ->  K  e. 
_V )
111110adantl 277 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  K  e.  _V )
112111, 29syl 14 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  K )  =  (
Base `  (mulGrp `  K
) ) )
1135eqcomd 2235 . . . . . . . . 9  |-  ( ph  ->  ( Base `  K
)  =  B )
114113adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  K )  =  B )
11588adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  B  =  ( Base `  L )
)
116 eqid 2229 . . . . . . . . . . 11  |-  ( Base `  L )  =  (
Base `  L )
117107, 116mgpbasg 13884 . . . . . . . . . 10  |-  ( L  e.  Abel  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
118106, 117syl 14 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
119115, 118eqtrd 2262 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  B  =  ( Base `  (mulGrp `  L
) ) )
120114, 119eqtrd 2262 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  K )  =  (
Base `  (mulGrp `  L
) ) )
12117ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) ) )
122121adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x  e.  B  /\  y  e.  B )  ->  ( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) ) )
1235eleq2d 2299 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  K
) ) )
1245eleq2d 2299 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  K
) ) )
125123, 124anbi12d 473 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  <->  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) ) )
126125bicomd 141 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  <->  ( x  e.  B  /\  y  e.  B ) ) )
127126adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  <->  ( x  e.  B  /\  y  e.  B ) ) )
128111, 38syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  Abel )  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
129128eqcomd 2235 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Abel )  ->  ( +g  `  (mulGrp `  K )
)  =  ( .r
`  K ) )
130129oveqd 6017 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  Abel )  ->  ( x
( +g  `  (mulGrp `  K ) ) y )  =  ( x ( .r `  K
) y ) )
131 eqid 2229 . . . . . . . . . . . . . 14  |-  ( .r
`  L )  =  ( .r `  L
)
132107, 131mgpplusgg 13882 . . . . . . . . . . . . 13  |-  ( L  e.  Abel  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
133106, 132syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  Abel )  ->  ( .r `  L )  =  ( +g  `  (mulGrp `  L ) ) )
134133eqcomd 2235 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Abel )  ->  ( +g  `  (mulGrp `  L )
)  =  ( .r
`  L ) )
135134oveqd 6017 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  Abel )  ->  ( x
( +g  `  (mulGrp `  L ) ) y )  =  ( x ( .r `  L
) y ) )
136130, 135eqeq12d 2244 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x ( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y )  <->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) ) )
137122, 127, 1363imtr4d 203 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
x ( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) ) )
138137imp 124 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  Abel )  /\  (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
139105, 109, 112, 120, 138sgrppropd 13441 . . . . . 6  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (mulGrp `  K )  e. Smgrp  <->  (mulGrp `  L
)  e. Smgrp ) )
140103, 1393anbi12d 1347 . . . . 5  |-  ( (
ph  /\  K  e.  Abel )  ->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
141140ex 115 . . . 4  |-  ( ph  ->  ( K  e.  Abel  -> 
( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) ) )
14299, 102, 141pm5.21ndd 710 . . 3  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
14397, 142bitrd 188 . 2  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
14411, 28, 12, 37isrng 13892 . 2  |-  ( K  e. Rng 
<->  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
145 eqid 2229 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
146116, 107, 145, 131isrng 13892 . 2  |-  ( L  e. Rng 
<->  ( L  e.  Abel  /\  (mulGrp `  L )  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
147143, 144, 1463bitr4g 223 1  |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   .rcmulr 13106  Smgrpcsgrp 13429   Grpcgrp 13528   Abelcabl 13817  mulGrpcmgp 13878  Rngcrng 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-cmn 13818  df-abl 13819  df-mgp 13879  df-rng 13891
This theorem is referenced by:  opprrngbg  14036  subrngpropd  14174
  Copyright terms: Public domain W3C validator