ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngpropd Unicode version

Theorem rngpropd 13717
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a non-unital ring iff the other one is. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
rngpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
rngpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
rngpropd  |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
Distinct variable groups:    x, y, B   
x, K, y    ph, x, y    x, L, y

Proof of Theorem rngpropd
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  ph )
2 simprll 537 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  u  e.  B )
3 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  K  e.  Abel )
4 simprlr 538 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  v  e.  B )
5 rngpropd.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  =  ( Base `  K ) )
65ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  B  =  ( Base `  K
) )
74, 6eleqtrd 2284 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  v  e.  ( Base `  K
) )
8 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  w  e.  B )
98, 6eleqtrd 2284 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  w  e.  ( Base `  K
) )
10 ablgrp 13625 . . . . . . . . . . . . . . . 16  |-  ( K  e.  Abel  ->  K  e. 
Grp )
11 eqid 2205 . . . . . . . . . . . . . . . . 17  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2205 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  K )  =  ( +g  `  K )
1311, 12grpcl 13340 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Grp  /\  v  e.  ( Base `  K )  /\  w  e.  ( Base `  K
) )  ->  (
v ( +g  `  K
) w )  e.  ( Base `  K
) )
1410, 13syl3an1 1283 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Abel  /\  v  e.  ( Base `  K
)  /\  w  e.  ( Base `  K )
)  ->  ( v
( +g  `  K ) w )  e.  (
Base `  K )
)
153, 7, 9, 14syl3anc 1250 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  K
) w )  e.  ( Base `  K
) )
1615, 6eleqtrrd 2285 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  K
) w )  e.  B )
17 rngpropd.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
1817oveqrspc2v 5971 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  B  /\  (
v ( +g  `  K
) w )  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
191, 2, 16, 18syl12anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
20 rngpropd.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
2120oveqrspc2v 5971 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  =  ( v ( +g  `  L ) w ) )
221, 4, 8, 21syl12anc 1248 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  K
) w )  =  ( v ( +g  `  L ) w ) )
2322oveq2d 5960 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  L ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
2419, 23eqtrd 2238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
25 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (mulGrp `  K )  e. Smgrp )
262, 6eleqtrd 2284 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  u  e.  ( Base `  K
) )
273elexd 2785 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  K  e.  _V )
28 eqid 2205 . . . . . . . . . . . . . . . . . . 19  |-  (mulGrp `  K )  =  (mulGrp `  K )
2928, 11mgpbasg 13688 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  _V  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
3027, 29syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  ( Base `  K )  =  ( Base `  (mulGrp `  K ) ) )
3126, 30eleqtrd 2284 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  u  e.  ( Base `  (mulGrp `  K ) ) )
327, 30eleqtrd 2284 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  v  e.  ( Base `  (mulGrp `  K ) ) )
33 eqid 2205 . . . . . . . . . . . . . . . . 17  |-  ( Base `  (mulGrp `  K )
)  =  ( Base `  (mulGrp `  K )
)
34 eqid 2205 . . . . . . . . . . . . . . . . 17  |-  ( +g  `  (mulGrp `  K )
)  =  ( +g  `  (mulGrp `  K )
)
3533, 34sgrpcl 13241 . . . . . . . . . . . . . . . 16  |-  ( ( (mulGrp `  K )  e. Smgrp  /\  u  e.  (
Base `  (mulGrp `  K
) )  /\  v  e.  ( Base `  (mulGrp `  K ) ) )  ->  ( u ( +g  `  (mulGrp `  K ) ) v )  e.  ( Base `  (mulGrp `  K )
) )
3625, 31, 32, 35syl3anc 1250 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  (mulGrp `  K ) ) v )  e.  ( Base `  (mulGrp `  K )
) )
37 eqid 2205 . . . . . . . . . . . . . . . . . 18  |-  ( .r
`  K )  =  ( .r `  K
)
3828, 37mgpplusgg 13686 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  _V  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
3927, 38syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
4039oveqd 5961 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  =  ( u ( +g  `  (mulGrp `  K ) ) v ) )
4136, 40, 303eltr4d 2289 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  e.  ( Base `  K
) )
4241, 6eleqtrrd 2285 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  e.  B )
439, 30eleqtrd 2284 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  w  e.  ( Base `  (mulGrp `  K ) ) )
4433, 34sgrpcl 13241 . . . . . . . . . . . . . . . 16  |-  ( ( (mulGrp `  K )  e. Smgrp  /\  u  e.  (
Base `  (mulGrp `  K
) )  /\  w  e.  ( Base `  (mulGrp `  K ) ) )  ->  ( u ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
4525, 31, 43, 44syl3anc 1250 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
4639oveqd 5961 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  =  ( u ( +g  `  (mulGrp `  K ) ) w ) )
4745, 46, 303eltr4d 2289 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  e.  ( Base `  K
) )
4847, 6eleqtrrd 2285 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  e.  B )
4920oveqrspc2v 5971 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) v )  e.  B  /\  (
u ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) v ) ( +g  `  L
) ( u ( .r `  K ) w ) ) )
501, 42, 48, 49syl12anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  L ) ( u ( .r `  K
) w ) ) )
5117oveqrspc2v 5971 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( .r
`  K ) v )  =  ( u ( .r `  L
) v ) )
5251ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) v )  =  ( u ( .r `  L ) v ) )
5317oveqrspc2v 5971 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  =  ( u ( .r `  L
) w ) )
541, 2, 8, 53syl12anc 1248 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( .r `  K ) w )  =  ( u ( .r `  L ) w ) )
5552, 54oveq12d 5962 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) v ) ( +g  `  L
) ( u ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) )
5650, 55eqtrd 2238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) )
5724, 56eqeq12d 2220 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  <->  ( u
( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) ) )
5811, 12grpcl 13340 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Grp  /\  u  e.  ( Base `  K )  /\  v  e.  ( Base `  K
) )  ->  (
u ( +g  `  K
) v )  e.  ( Base `  K
) )
5910, 58syl3an1 1283 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Abel  /\  u  e.  ( Base `  K
)  /\  v  e.  ( Base `  K )
)  ->  ( u
( +g  `  K ) v )  e.  (
Base `  K )
)
603, 26, 7, 59syl3anc 1250 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  K
) v )  e.  ( Base `  K
) )
6160, 6eleqtrrd 2285 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  K
) v )  e.  B )
6217oveqrspc2v 5971 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( +g  `  K
) v )  e.  B  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  K
) v ) ( .r `  L ) w ) )
631, 61, 8, 62syl12anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( +g  `  K ) v ) ( .r
`  L ) w ) )
6420oveqrspc2v 5971 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
6564ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
u ( +g  `  K
) v )  =  ( u ( +g  `  L ) v ) )
6665oveq1d 5959 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( +g  `  K ) v ) ( .r `  L
) w )  =  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w ) )
6763, 66eqtrd 2238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w ) )
6833, 34sgrpcl 13241 . . . . . . . . . . . . . . . 16  |-  ( ( (mulGrp `  K )  e. Smgrp  /\  v  e.  (
Base `  (mulGrp `  K
) )  /\  w  e.  ( Base `  (mulGrp `  K ) ) )  ->  ( v ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
6925, 32, 43, 68syl3anc 1250 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( +g  `  (mulGrp `  K ) ) w )  e.  ( Base `  (mulGrp `  K )
) )
7039oveqd 5961 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  =  ( v ( +g  `  (mulGrp `  K ) ) w ) )
7169, 70, 303eltr4d 2289 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  e.  ( Base `  K
) )
7271, 6eleqtrrd 2285 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  e.  B )
7320oveqrspc2v 5971 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) w )  e.  B  /\  (
v ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) w ) ( +g  `  K ) ( v ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) w ) ( +g  `  L
) ( v ( .r `  K ) w ) ) )
741, 48, 72, 73syl12anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  =  ( ( u ( .r `  K ) w ) ( +g  `  L ) ( v ( .r `  K
) w ) ) )
7517oveqrspc2v 5971 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  =  ( v ( .r `  L
) w ) )
761, 4, 8, 75syl12anc 1248 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
v ( .r `  K ) w )  =  ( v ( .r `  L ) w ) )
7754, 76oveq12d 5962 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) w ) ( +g  `  L
) ( v ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) )
7874, 77eqtrd 2238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) )
7967, 78eqeq12d 2220 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  <->  ( (
u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )
8057, 79anbi12d 473 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( (
u  e.  B  /\  v  e.  B )  /\  w  e.  B
) )  ->  (
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
8180anassrs 400 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp ) )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  w  e.  B )  ->  (
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
8281ralbidva 2502 . . . . . . 7  |-  ( ( ( ph  /\  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )
)  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
83822ralbidva 2528 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
845adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  B  =  ( Base `  K ) )
8584raleqdv 2708 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. w  e.  ( Base `  K ) ( ( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
8684, 85raleqbidv 2718 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
8784, 86raleqbidv 2718 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
88 rngpropd.2 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  L ) )
8988adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  B  =  ( Base `  L ) )
9089raleqdv 2708 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. w  e.  B  ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. w  e.  ( Base `  L ) ( ( u ( .r
`  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
9189, 90raleqbidv 2718 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
9289, 91raleqbidv 2718 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
9383, 87, 923bitr3d 218 . . . . 5  |-  ( (
ph  /\  ( K  e.  Abel  /\  (mulGrp `  K
)  e. Smgrp ) )  ->  ( A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
9493pm5.32da 452 . . . 4  |-  ( ph  ->  ( ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) )  <->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) ) )
95 df-3an 983 . . . 4  |-  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
96 df-3an 983 . . . 4  |-  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp )  /\  A. u  e.  (
Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
9794, 95, 963bitr4g 223 . . 3  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
98 simp1 1000 . . . . 5  |-  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  K  e.  Abel )
9998a1i 9 . . . 4  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  K  e.  Abel ) )
100 simp1 1000 . . . . 5  |-  ( ( L  e.  Abel  /\  (mulGrp `  L )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  L  e.  Abel )
1015, 88, 20ablpropd 13632 . . . . 5  |-  ( ph  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
102100, 101imbitrrid 156 . . . 4  |-  ( ph  ->  ( ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  ->  K  e.  Abel ) )
103101adantr 276 . . . . . 6  |-  ( (
ph  /\  K  e.  Abel )  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
10428mgpex 13687 . . . . . . . 8  |-  ( K  e.  Abel  ->  (mulGrp `  K )  e.  _V )
105104adantl 277 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  (mulGrp `  K
)  e.  _V )
106101biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  L  e.  Abel )
107 eqid 2205 . . . . . . . . 9  |-  (mulGrp `  L )  =  (mulGrp `  L )
108107mgpex 13687 . . . . . . . 8  |-  ( L  e.  Abel  ->  (mulGrp `  L )  e.  _V )
109106, 108syl 14 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  (mulGrp `  L
)  e.  _V )
110 elex 2783 . . . . . . . . 9  |-  ( K  e.  Abel  ->  K  e. 
_V )
111110adantl 277 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  K  e.  _V )
112111, 29syl 14 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  K )  =  (
Base `  (mulGrp `  K
) ) )
1135eqcomd 2211 . . . . . . . . 9  |-  ( ph  ->  ( Base `  K
)  =  B )
114113adantr 276 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  K )  =  B )
11588adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  B  =  ( Base `  L )
)
116 eqid 2205 . . . . . . . . . . 11  |-  ( Base `  L )  =  (
Base `  L )
117107, 116mgpbasg 13688 . . . . . . . . . 10  |-  ( L  e.  Abel  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
118106, 117syl 14 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  L )  =  (
Base `  (mulGrp `  L
) ) )
119115, 118eqtrd 2238 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  B  =  ( Base `  (mulGrp `  L
) ) )
120114, 119eqtrd 2238 . . . . . . 7  |-  ( (
ph  /\  K  e.  Abel )  ->  ( Base `  K )  =  (
Base `  (mulGrp `  L
) ) )
12117ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) ) )
122121adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x  e.  B  /\  y  e.  B )  ->  ( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) ) )
1235eleq2d 2275 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  K
) ) )
1245eleq2d 2275 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  K
) ) )
125123, 124anbi12d 473 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  <->  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) ) )
126125bicomd 141 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  <->  ( x  e.  B  /\  y  e.  B ) ) )
127126adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  <->  ( x  e.  B  /\  y  e.  B ) ) )
128111, 38syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  Abel )  ->  ( .r `  K )  =  ( +g  `  (mulGrp `  K ) ) )
129128eqcomd 2211 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Abel )  ->  ( +g  `  (mulGrp `  K )
)  =  ( .r
`  K ) )
130129oveqd 5961 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  Abel )  ->  ( x
( +g  `  (mulGrp `  K ) ) y )  =  ( x ( .r `  K
) y ) )
131 eqid 2205 . . . . . . . . . . . . . 14  |-  ( .r
`  L )  =  ( .r `  L
)
132107, 131mgpplusgg 13686 . . . . . . . . . . . . 13  |-  ( L  e.  Abel  ->  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) ) )
133106, 132syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  K  e.  Abel )  ->  ( .r `  L )  =  ( +g  `  (mulGrp `  L ) ) )
134133eqcomd 2211 . . . . . . . . . . 11  |-  ( (
ph  /\  K  e.  Abel )  ->  ( +g  `  (mulGrp `  L )
)  =  ( .r
`  L ) )
135134oveqd 5961 . . . . . . . . . 10  |-  ( (
ph  /\  K  e.  Abel )  ->  ( x
( +g  `  (mulGrp `  L ) ) y )  =  ( x ( .r `  L
) y ) )
136130, 135eqeq12d 2220 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x ( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y )  <->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) ) )
137122, 127, 1363imtr4d 203 . . . . . . . 8  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  (
x ( +g  `  (mulGrp `  K ) ) y )  =  ( x ( +g  `  (mulGrp `  L ) ) y ) ) )
138137imp 124 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  Abel )  /\  (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
139105, 109, 112, 120, 138sgrppropd 13245 . . . . . 6  |-  ( (
ph  /\  K  e.  Abel )  ->  ( (mulGrp `  K )  e. Smgrp  <->  (mulGrp `  L
)  e. Smgrp ) )
140103, 1393anbi12d 1326 . . . . 5  |-  ( (
ph  /\  K  e.  Abel )  ->  ( ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
141140ex 115 . . . 4  |-  ( ph  ->  ( K  e.  Abel  -> 
( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) ) )
14299, 102, 141pm5.21ndd 707 . . 3  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
14397, 142bitrd 188 . 2  |-  ( ph  ->  ( ( K  e. 
Abel  /\  (mulGrp `  K
)  e. Smgrp  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( L  e. 
Abel  /\  (mulGrp `  L
)  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
14411, 28, 12, 37isrng 13696 . 2  |-  ( K  e. Rng 
<->  ( K  e.  Abel  /\  (mulGrp `  K )  e. Smgrp  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
145 eqid 2205 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
146116, 107, 145, 131isrng 13696 . 2  |-  ( L  e. Rng 
<->  ( L  e.  Abel  /\  (mulGrp `  L )  e. Smgrp  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
147143, 144, 1463bitr4g 223 1  |-  ( ph  ->  ( K  e. Rng  <->  L  e. Rng ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910  Smgrpcsgrp 13233   Grpcgrp 13332   Abelcabl 13621  mulGrpcmgp 13682  Rngcrng 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-cmn 13622  df-abl 13623  df-mgp 13683  df-rng 13695
This theorem is referenced by:  opprrngbg  13840  subrngpropd  13978
  Copyright terms: Public domain W3C validator