ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzaplem Unicode version

Theorem expaddzaplem 10462
Description: Lemma for expaddzap 10463. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzaplem  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )

Proof of Theorem expaddzaplem
StepHypRef Expression
1 simp1l 1006 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  e.  CC )
2 simp3 984 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
3 expcl 10437 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
41, 2, 3syl2anc 409 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  CC )
5 simp2r 1009 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN )
65nnnn0d 9143 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN0 )
7 expcl 10437 . . . 4  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
81, 6, 7syl2anc 409 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
9 simp1r 1007 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A #  0 )
105nnzd 9285 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  ZZ )
11 expap0i 10451 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M ) #  0 )
121, 9, 10, 11syl3anc 1220 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
134, 8, 12divrecap2d 8667 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ N )  / 
( A ^ -u M
) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( A ^ N ) ) )
14 simp2l 1008 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  RR )
1514recnd 7906 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  CC )
1615negnegd 8177 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u -u M  =  M )
17 nnnegz 9170 . . . . . . . . . 10  |-  ( -u M  e.  NN  ->  -u -u M  e.  ZZ )
185, 17syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u -u M  e.  ZZ )
1916, 18eqeltrrd 2235 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  ZZ )
202nn0zd 9284 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
2119, 20zaddcld 9290 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  ZZ )
22 expclzap 10444 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  ( M  +  N )  e.  ZZ )  ->  ( A ^ ( M  +  N ) )  e.  CC )
231, 9, 21, 22syl3anc 1220 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  e.  CC )
2423adantr 274 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  e.  CC )
258adantr 274 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
2612adantr 274 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
2724, 25, 26divcanap4d 8669 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( ( A ^
( M  +  N
) )  x.  ( A ^ -u M ) )  /  ( A ^ -u M ) )  =  ( A ^ ( M  +  N ) ) )
281adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  A  e.  CC )
29 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( M  +  N )  e.  NN0 )
306adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  -u M  e.  NN0 )
31 expadd 10461 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( M  +  N
)  e.  NN0  /\  -u M  e.  NN0 )  ->  ( A ^ (
( M  +  N
)  +  -u M
) )  =  ( ( A ^ ( M  +  N )
)  x.  ( A ^ -u M ) ) )
3228, 29, 30, 31syl3anc 1220 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( ( M  +  N )  + 
-u M ) )  =  ( ( A ^ ( M  +  N ) )  x.  ( A ^ -u M
) ) )
3321zcnd 9287 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  CC )
3433, 15negsubd 8192 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  + 
-u M )  =  ( ( M  +  N )  -  M
) )
352nn0cnd 9145 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  CC )
3615, 35pncan2d 8188 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  -  M )  =  N )
3734, 36eqtrd 2190 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  + 
-u M )  =  N )
3837adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( M  +  N
)  +  -u M
)  =  N )
3938oveq2d 5840 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( ( M  +  N )  + 
-u M ) )  =  ( A ^ N ) )
4032, 39eqtr3d 2192 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( A ^ ( M  +  N )
)  x.  ( A ^ -u M ) )  =  ( A ^ N ) )
4140oveq1d 5839 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( ( A ^
( M  +  N
) )  x.  ( A ^ -u M ) )  /  ( A ^ -u M ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
4227, 41eqtr3d 2192 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
431adantr 274 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  A  e.  CC )
449adantr 274 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  A #  0 )
4533adantr 274 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( M  +  N )  e.  CC )
46 simpr 109 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  -u ( M  +  N )  e.  NN0 )
47 expineg2 10428 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( ( M  +  N )  e.  CC  /\  -u ( M  +  N
)  e.  NN0 )
)  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
4843, 44, 45, 46, 47syl22anc 1221 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
4921znegcld 9288 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  +  N )  e.  ZZ )
50 expclzap 10444 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  -u ( M  +  N )  e.  ZZ )  ->  ( A ^ -u ( M  +  N ) )  e.  CC )
511, 9, 49, 50syl3anc 1220 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u ( M  +  N
) )  e.  CC )
5251adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ -u ( M  +  N ) )  e.  CC )
534adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ N )  e.  CC )
54 expap0i 10451 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N ) #  0 )
551, 9, 20, 54syl3anc 1220 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ N ) #  0 )
5655adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ N ) #  0 )
5752, 53, 56divcanap4d 8669 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) )  /  ( A ^ N ) )  =  ( A ^ -u ( M  +  N )
) )
582adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  N  e.  NN0 )
59 expadd 10461 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u ( M  +  N
)  e.  NN0  /\  N  e.  NN0 )  -> 
( A ^ ( -u ( M  +  N
)  +  N ) )  =  ( ( A ^ -u ( M  +  N )
)  x.  ( A ^ N ) ) )
6043, 46, 58, 59syl3anc 1220 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( -u ( M  +  N )  +  N ) )  =  ( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) ) )
6115, 35negdi2d 8200 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  +  N )  =  (
-u M  -  N
) )
6261oveq1d 5839 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u ( M  +  N )  +  N )  =  ( ( -u M  -  N )  +  N
) )
6315negcld 8173 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  CC )
6463, 35npcand 8190 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( -u M  -  N )  +  N )  =  -u M )
6562, 64eqtrd 2190 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u ( M  +  N )  +  N )  =  -u M )
6665adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( -u ( M  +  N
)  +  N )  =  -u M )
6766oveq2d 5840 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( -u ( M  +  N )  +  N ) )  =  ( A ^ -u M
) )
6860, 67eqtr3d 2192 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( A ^ -u ( M  +  N )
)  x.  ( A ^ N ) )  =  ( A ^ -u M ) )
6968oveq1d 5839 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) )  /  ( A ^ N ) )  =  ( ( A ^ -u M )  /  ( A ^ N ) ) )
7057, 69eqtr3d 2192 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ -u ( M  +  N ) )  =  ( ( A ^ -u M )  /  ( A ^ N ) ) )
7170oveq2d 5840 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  +  N ) ) )  =  ( 1  /  ( ( A ^ -u M )  /  ( A ^ N ) ) ) )
728, 4, 12, 55recdivapd 8680 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  / 
( ( A ^ -u M )  /  ( A ^ N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7372adantr 274 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( ( A ^ -u M
)  /  ( A ^ N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7471, 73eqtrd 2190 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7548, 74eqtrd 2190 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
76 elznn0 9182 . . . . 5  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
7776simprbi 273 . . . 4  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
7821, 77syl 14 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  e. 
NN0  \/  -u ( M  +  N )  e. 
NN0 ) )
7942, 75, 78mpjaodan 788 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ N
)  /  ( A ^ -u M ) ) )
80 expineg2 10428 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  CC  /\  -u M  e.  NN0 ) )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
811, 9, 15, 6, 80syl22anc 1221 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
8281oveq1d 5839 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ N
) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( A ^ N ) ) )
8313, 79, 823eqtr4d 2200 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5824   CCcc 7730   RRcr 7731   0cc0 7732   1c1 7733    + caddc 7735    x. cmul 7737    - cmin 8046   -ucneg 8047   # cap 8456    / cdiv 8545   NNcn 8833   NN0cn0 9090   ZZcz 9167   ^cexp 10418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-n0 9091  df-z 9168  df-uz 9440  df-seqfrec 10345  df-exp 10419
This theorem is referenced by:  expaddzap  10463
  Copyright terms: Public domain W3C validator