ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzaplem Unicode version

Theorem expaddzaplem 10565
Description: Lemma for expaddzap 10566. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzaplem  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )

Proof of Theorem expaddzaplem
StepHypRef Expression
1 simp1l 1021 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  e.  CC )
2 simp3 999 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
3 expcl 10540 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
41, 2, 3syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  CC )
5 simp2r 1024 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN )
65nnnn0d 9231 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN0 )
7 expcl 10540 . . . 4  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
81, 6, 7syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
9 simp1r 1022 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A #  0 )
105nnzd 9376 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  ZZ )
11 expap0i 10554 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M ) #  0 )
121, 9, 10, 11syl3anc 1238 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
134, 8, 12divrecap2d 8753 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ N )  / 
( A ^ -u M
) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( A ^ N ) ) )
14 simp2l 1023 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  RR )
1514recnd 7988 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  CC )
1615negnegd 8261 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u -u M  =  M )
17 nnnegz 9258 . . . . . . . . . 10  |-  ( -u M  e.  NN  ->  -u -u M  e.  ZZ )
185, 17syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u -u M  e.  ZZ )
1916, 18eqeltrrd 2255 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  ZZ )
202nn0zd 9375 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
2119, 20zaddcld 9381 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  ZZ )
22 expclzap 10547 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  ( M  +  N )  e.  ZZ )  ->  ( A ^ ( M  +  N ) )  e.  CC )
231, 9, 21, 22syl3anc 1238 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  e.  CC )
2423adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  e.  CC )
258adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
2612adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
2724, 25, 26divcanap4d 8755 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( ( A ^
( M  +  N
) )  x.  ( A ^ -u M ) )  /  ( A ^ -u M ) )  =  ( A ^ ( M  +  N ) ) )
281adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  A  e.  CC )
29 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( M  +  N )  e.  NN0 )
306adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  -u M  e.  NN0 )
31 expadd 10564 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( M  +  N
)  e.  NN0  /\  -u M  e.  NN0 )  ->  ( A ^ (
( M  +  N
)  +  -u M
) )  =  ( ( A ^ ( M  +  N )
)  x.  ( A ^ -u M ) ) )
3228, 29, 30, 31syl3anc 1238 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( ( M  +  N )  + 
-u M ) )  =  ( ( A ^ ( M  +  N ) )  x.  ( A ^ -u M
) ) )
3321zcnd 9378 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  CC )
3433, 15negsubd 8276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  + 
-u M )  =  ( ( M  +  N )  -  M
) )
352nn0cnd 9233 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  CC )
3615, 35pncan2d 8272 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  -  M )  =  N )
3734, 36eqtrd 2210 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  + 
-u M )  =  N )
3837adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( M  +  N
)  +  -u M
)  =  N )
3938oveq2d 5893 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( ( M  +  N )  + 
-u M ) )  =  ( A ^ N ) )
4032, 39eqtr3d 2212 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( A ^ ( M  +  N )
)  x.  ( A ^ -u M ) )  =  ( A ^ N ) )
4140oveq1d 5892 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( ( A ^
( M  +  N
) )  x.  ( A ^ -u M ) )  /  ( A ^ -u M ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
4227, 41eqtr3d 2212 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
431adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  A  e.  CC )
449adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  A #  0 )
4533adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( M  +  N )  e.  CC )
46 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  -u ( M  +  N )  e.  NN0 )
47 expineg2 10531 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( ( M  +  N )  e.  CC  /\  -u ( M  +  N
)  e.  NN0 )
)  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
4843, 44, 45, 46, 47syl22anc 1239 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
4921znegcld 9379 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  +  N )  e.  ZZ )
50 expclzap 10547 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  -u ( M  +  N )  e.  ZZ )  ->  ( A ^ -u ( M  +  N ) )  e.  CC )
511, 9, 49, 50syl3anc 1238 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u ( M  +  N
) )  e.  CC )
5251adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ -u ( M  +  N ) )  e.  CC )
534adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ N )  e.  CC )
54 expap0i 10554 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N ) #  0 )
551, 9, 20, 54syl3anc 1238 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ N ) #  0 )
5655adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ N ) #  0 )
5752, 53, 56divcanap4d 8755 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) )  /  ( A ^ N ) )  =  ( A ^ -u ( M  +  N )
) )
582adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  N  e.  NN0 )
59 expadd 10564 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u ( M  +  N
)  e.  NN0  /\  N  e.  NN0 )  -> 
( A ^ ( -u ( M  +  N
)  +  N ) )  =  ( ( A ^ -u ( M  +  N )
)  x.  ( A ^ N ) ) )
6043, 46, 58, 59syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( -u ( M  +  N )  +  N ) )  =  ( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) ) )
6115, 35negdi2d 8284 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  +  N )  =  (
-u M  -  N
) )
6261oveq1d 5892 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u ( M  +  N )  +  N )  =  ( ( -u M  -  N )  +  N
) )
6315negcld 8257 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  CC )
6463, 35npcand 8274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( -u M  -  N )  +  N )  =  -u M )
6562, 64eqtrd 2210 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u ( M  +  N )  +  N )  =  -u M )
6665adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( -u ( M  +  N
)  +  N )  =  -u M )
6766oveq2d 5893 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( -u ( M  +  N )  +  N ) )  =  ( A ^ -u M
) )
6860, 67eqtr3d 2212 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( A ^ -u ( M  +  N )
)  x.  ( A ^ N ) )  =  ( A ^ -u M ) )
6968oveq1d 5892 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) )  /  ( A ^ N ) )  =  ( ( A ^ -u M )  /  ( A ^ N ) ) )
7057, 69eqtr3d 2212 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ -u ( M  +  N ) )  =  ( ( A ^ -u M )  /  ( A ^ N ) ) )
7170oveq2d 5893 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  +  N ) ) )  =  ( 1  /  ( ( A ^ -u M )  /  ( A ^ N ) ) ) )
728, 4, 12, 55recdivapd 8766 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  / 
( ( A ^ -u M )  /  ( A ^ N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7372adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( ( A ^ -u M
)  /  ( A ^ N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7471, 73eqtrd 2210 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7548, 74eqtrd 2210 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
76 elznn0 9270 . . . . 5  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
7776simprbi 275 . . . 4  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
7821, 77syl 14 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  e. 
NN0  \/  -u ( M  +  N )  e. 
NN0 ) )
7942, 75, 78mpjaodan 798 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ N
)  /  ( A ^ -u M ) ) )
80 expineg2 10531 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  CC  /\  -u M  e.  NN0 ) )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
811, 9, 15, 6, 80syl22anc 1239 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
8281oveq1d 5892 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ N
) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( A ^ N ) ) )
8313, 79, 823eqtr4d 2220 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    - cmin 8130   -ucneg 8131   # cap 8540    / cdiv 8631   NNcn 8921   NN0cn0 9178   ZZcz 9255   ^cexp 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-exp 10522
This theorem is referenced by:  expaddzap  10566
  Copyright terms: Public domain W3C validator