ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzaplem Unicode version

Theorem expaddzaplem 10676
Description: Lemma for expaddzap 10677. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzaplem  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )

Proof of Theorem expaddzaplem
StepHypRef Expression
1 simp1l 1023 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  e.  CC )
2 simp3 1001 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
3 expcl 10651 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
41, 2, 3syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  CC )
5 simp2r 1026 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN )
65nnnn0d 9304 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN0 )
7 expcl 10651 . . . 4  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
81, 6, 7syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
9 simp1r 1024 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A #  0 )
105nnzd 9449 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  ZZ )
11 expap0i 10665 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M ) #  0 )
121, 9, 10, 11syl3anc 1249 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
134, 8, 12divrecap2d 8823 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ N )  / 
( A ^ -u M
) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( A ^ N ) ) )
14 simp2l 1025 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  RR )
1514recnd 8057 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  CC )
1615negnegd 8330 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u -u M  =  M )
17 nnnegz 9331 . . . . . . . . . 10  |-  ( -u M  e.  NN  ->  -u -u M  e.  ZZ )
185, 17syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u -u M  e.  ZZ )
1916, 18eqeltrrd 2274 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  ZZ )
202nn0zd 9448 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
2119, 20zaddcld 9454 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  ZZ )
22 expclzap 10658 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  ( M  +  N )  e.  ZZ )  ->  ( A ^ ( M  +  N ) )  e.  CC )
231, 9, 21, 22syl3anc 1249 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  e.  CC )
2423adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  e.  CC )
258adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
2612adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
2724, 25, 26divcanap4d 8825 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( ( A ^
( M  +  N
) )  x.  ( A ^ -u M ) )  /  ( A ^ -u M ) )  =  ( A ^ ( M  +  N ) ) )
281adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  A  e.  CC )
29 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( M  +  N )  e.  NN0 )
306adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  -u M  e.  NN0 )
31 expadd 10675 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( M  +  N
)  e.  NN0  /\  -u M  e.  NN0 )  ->  ( A ^ (
( M  +  N
)  +  -u M
) )  =  ( ( A ^ ( M  +  N )
)  x.  ( A ^ -u M ) ) )
3228, 29, 30, 31syl3anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( ( M  +  N )  + 
-u M ) )  =  ( ( A ^ ( M  +  N ) )  x.  ( A ^ -u M
) ) )
3321zcnd 9451 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  CC )
3433, 15negsubd 8345 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  + 
-u M )  =  ( ( M  +  N )  -  M
) )
352nn0cnd 9306 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  CC )
3615, 35pncan2d 8341 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  -  M )  =  N )
3734, 36eqtrd 2229 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  + 
-u M )  =  N )
3837adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( M  +  N
)  +  -u M
)  =  N )
3938oveq2d 5939 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( ( M  +  N )  + 
-u M ) )  =  ( A ^ N ) )
4032, 39eqtr3d 2231 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( A ^ ( M  +  N )
)  x.  ( A ^ -u M ) )  =  ( A ^ N ) )
4140oveq1d 5938 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  (
( ( A ^
( M  +  N
) )  x.  ( A ^ -u M ) )  /  ( A ^ -u M ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
4227, 41eqtr3d 2231 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
431adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  A  e.  CC )
449adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  A #  0 )
4533adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( M  +  N )  e.  CC )
46 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  -u ( M  +  N )  e.  NN0 )
47 expineg2 10642 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( ( M  +  N )  e.  CC  /\  -u ( M  +  N
)  e.  NN0 )
)  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
4843, 44, 45, 46, 47syl22anc 1250 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( 1  /  ( A ^ -u ( M  +  N ) ) ) )
4921znegcld 9452 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  +  N )  e.  ZZ )
50 expclzap 10658 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  -u ( M  +  N )  e.  ZZ )  ->  ( A ^ -u ( M  +  N ) )  e.  CC )
511, 9, 49, 50syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u ( M  +  N
) )  e.  CC )
5251adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ -u ( M  +  N ) )  e.  CC )
534adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ N )  e.  CC )
54 expap0i 10665 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N ) #  0 )
551, 9, 20, 54syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ N ) #  0 )
5655adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ N ) #  0 )
5752, 53, 56divcanap4d 8825 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) )  /  ( A ^ N ) )  =  ( A ^ -u ( M  +  N )
) )
582adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  N  e.  NN0 )
59 expadd 10675 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u ( M  +  N
)  e.  NN0  /\  N  e.  NN0 )  -> 
( A ^ ( -u ( M  +  N
)  +  N ) )  =  ( ( A ^ -u ( M  +  N )
)  x.  ( A ^ N ) ) )
6043, 46, 58, 59syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( -u ( M  +  N )  +  N ) )  =  ( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) ) )
6115, 35negdi2d 8353 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  +  N )  =  (
-u M  -  N
) )
6261oveq1d 5938 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u ( M  +  N )  +  N )  =  ( ( -u M  -  N )  +  N
) )
6315negcld 8326 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  CC )
6463, 35npcand 8343 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( -u M  -  N )  +  N )  =  -u M )
6562, 64eqtrd 2229 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u ( M  +  N )  +  N )  =  -u M )
6665adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( -u ( M  +  N
)  +  N )  =  -u M )
6766oveq2d 5939 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( -u ( M  +  N )  +  N ) )  =  ( A ^ -u M
) )
6860, 67eqtr3d 2231 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( A ^ -u ( M  +  N )
)  x.  ( A ^ N ) )  =  ( A ^ -u M ) )
6968oveq1d 5938 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
( ( A ^ -u ( M  +  N
) )  x.  ( A ^ N ) )  /  ( A ^ N ) )  =  ( ( A ^ -u M )  /  ( A ^ N ) ) )
7057, 69eqtr3d 2231 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ -u ( M  +  N ) )  =  ( ( A ^ -u M )  /  ( A ^ N ) ) )
7170oveq2d 5939 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  +  N ) ) )  =  ( 1  /  ( ( A ^ -u M )  /  ( A ^ N ) ) ) )
728, 4, 12, 55recdivapd 8836 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  / 
( ( A ^ -u M )  /  ( A ^ N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7372adantr 276 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( ( A ^ -u M
)  /  ( A ^ N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7471, 73eqtrd 2229 . . . 4  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  (
1  /  ( A ^ -u ( M  +  N ) ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
7548, 74eqtrd 2229 . . 3  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  /\  -u ( M  +  N )  e.  NN0 )  ->  ( A ^ ( M  +  N ) )  =  ( ( A ^ N )  /  ( A ^ -u M ) ) )
76 elznn0 9343 . . . . 5  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
7776simprbi 275 . . . 4  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
7821, 77syl 14 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( M  +  N )  e. 
NN0  \/  -u ( M  +  N )  e. 
NN0 ) )
7942, 75, 78mpjaodan 799 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ N
)  /  ( A ^ -u M ) ) )
80 expineg2 10642 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  CC  /\  -u M  e.  NN0 ) )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
811, 9, 15, 6, 80syl22anc 1250 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
8281oveq1d 5938 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ M )  x.  ( A ^ N
) )  =  ( ( 1  /  ( A ^ -u M ) )  x.  ( A ^ N ) ) )
8313, 79, 823eqtr4d 2239 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  +  N
) )  =  ( ( A ^ M
)  x.  ( A ^ N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5923   CCcc 7879   RRcr 7880   0cc0 7881   1c1 7882    + caddc 7884    x. cmul 7886    - cmin 8199   -ucneg 8200   # cap 8610    / cdiv 8701   NNcn 8992   NN0cn0 9251   ZZcz 9328   ^cexp 10632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-seqfrec 10542  df-exp 10633
This theorem is referenced by:  expaddzap  10677
  Copyright terms: Public domain W3C validator