| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expaddzaplem | Unicode version | ||
| Description: Lemma for expaddzap 10765. (Contributed by Jim Kingdon, 10-Jun-2020.) |
| Ref | Expression |
|---|---|
| expaddzaplem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1024 |
. . . 4
| |
| 2 | simp3 1002 |
. . . 4
| |
| 3 | expcl 10739 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . 3
|
| 5 | simp2r 1027 |
. . . . 5
| |
| 6 | 5 | nnnn0d 9383 |
. . . 4
|
| 7 | expcl 10739 |
. . . 4
| |
| 8 | 1, 6, 7 | syl2anc 411 |
. . 3
|
| 9 | simp1r 1025 |
. . . 4
| |
| 10 | 5 | nnzd 9529 |
. . . 4
|
| 11 | expap0i 10753 |
. . . 4
| |
| 12 | 1, 9, 10, 11 | syl3anc 1250 |
. . 3
|
| 13 | 4, 8, 12 | divrecap2d 8902 |
. 2
|
| 14 | simp2l 1026 |
. . . . . . . . . . 11
| |
| 15 | 14 | recnd 8136 |
. . . . . . . . . 10
|
| 16 | 15 | negnegd 8409 |
. . . . . . . . 9
|
| 17 | nnnegz 9410 |
. . . . . . . . . 10
| |
| 18 | 5, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 16, 18 | eqeltrrd 2285 |
. . . . . . . 8
|
| 20 | 2 | nn0zd 9528 |
. . . . . . . 8
|
| 21 | 19, 20 | zaddcld 9534 |
. . . . . . 7
|
| 22 | expclzap 10746 |
. . . . . . 7
| |
| 23 | 1, 9, 21, 22 | syl3anc 1250 |
. . . . . 6
|
| 24 | 23 | adantr 276 |
. . . . 5
|
| 25 | 8 | adantr 276 |
. . . . 5
|
| 26 | 12 | adantr 276 |
. . . . 5
|
| 27 | 24, 25, 26 | divcanap4d 8904 |
. . . 4
|
| 28 | 1 | adantr 276 |
. . . . . . 7
|
| 29 | simpr 110 |
. . . . . . 7
| |
| 30 | 6 | adantr 276 |
. . . . . . 7
|
| 31 | expadd 10763 |
. . . . . . 7
| |
| 32 | 28, 29, 30, 31 | syl3anc 1250 |
. . . . . 6
|
| 33 | 21 | zcnd 9531 |
. . . . . . . . . 10
|
| 34 | 33, 15 | negsubd 8424 |
. . . . . . . . 9
|
| 35 | 2 | nn0cnd 9385 |
. . . . . . . . . 10
|
| 36 | 15, 35 | pncan2d 8420 |
. . . . . . . . 9
|
| 37 | 34, 36 | eqtrd 2240 |
. . . . . . . 8
|
| 38 | 37 | adantr 276 |
. . . . . . 7
|
| 39 | 38 | oveq2d 5983 |
. . . . . 6
|
| 40 | 32, 39 | eqtr3d 2242 |
. . . . 5
|
| 41 | 40 | oveq1d 5982 |
. . . 4
|
| 42 | 27, 41 | eqtr3d 2242 |
. . 3
|
| 43 | 1 | adantr 276 |
. . . . 5
|
| 44 | 9 | adantr 276 |
. . . . 5
|
| 45 | 33 | adantr 276 |
. . . . 5
|
| 46 | simpr 110 |
. . . . 5
| |
| 47 | expineg2 10730 |
. . . . 5
| |
| 48 | 43, 44, 45, 46, 47 | syl22anc 1251 |
. . . 4
|
| 49 | 21 | znegcld 9532 |
. . . . . . . . . 10
|
| 50 | expclzap 10746 |
. . . . . . . . . 10
| |
| 51 | 1, 9, 49, 50 | syl3anc 1250 |
. . . . . . . . 9
|
| 52 | 51 | adantr 276 |
. . . . . . . 8
|
| 53 | 4 | adantr 276 |
. . . . . . . 8
|
| 54 | expap0i 10753 |
. . . . . . . . . 10
| |
| 55 | 1, 9, 20, 54 | syl3anc 1250 |
. . . . . . . . 9
|
| 56 | 55 | adantr 276 |
. . . . . . . 8
|
| 57 | 52, 53, 56 | divcanap4d 8904 |
. . . . . . 7
|
| 58 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 59 | expadd 10763 |
. . . . . . . . . 10
| |
| 60 | 43, 46, 58, 59 | syl3anc 1250 |
. . . . . . . . 9
|
| 61 | 15, 35 | negdi2d 8432 |
. . . . . . . . . . . . 13
|
| 62 | 61 | oveq1d 5982 |
. . . . . . . . . . . 12
|
| 63 | 15 | negcld 8405 |
. . . . . . . . . . . . 13
|
| 64 | 63, 35 | npcand 8422 |
. . . . . . . . . . . 12
|
| 65 | 62, 64 | eqtrd 2240 |
. . . . . . . . . . 11
|
| 66 | 65 | adantr 276 |
. . . . . . . . . 10
|
| 67 | 66 | oveq2d 5983 |
. . . . . . . . 9
|
| 68 | 60, 67 | eqtr3d 2242 |
. . . . . . . 8
|
| 69 | 68 | oveq1d 5982 |
. . . . . . 7
|
| 70 | 57, 69 | eqtr3d 2242 |
. . . . . 6
|
| 71 | 70 | oveq2d 5983 |
. . . . 5
|
| 72 | 8, 4, 12, 55 | recdivapd 8915 |
. . . . . 6
|
| 73 | 72 | adantr 276 |
. . . . 5
|
| 74 | 71, 73 | eqtrd 2240 |
. . . 4
|
| 75 | 48, 74 | eqtrd 2240 |
. . 3
|
| 76 | elznn0 9422 |
. . . . 5
| |
| 77 | 76 | simprbi 275 |
. . . 4
|
| 78 | 21, 77 | syl 14 |
. . 3
|
| 79 | 42, 75, 78 | mpjaodan 800 |
. 2
|
| 80 | expineg2 10730 |
. . . 4
| |
| 81 | 1, 9, 15, 6, 80 | syl22anc 1251 |
. . 3
|
| 82 | 81 | oveq1d 5982 |
. 2
|
| 83 | 13, 79, 82 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-exp 10721 |
| This theorem is referenced by: expaddzap 10765 |
| Copyright terms: Public domain | W3C validator |