ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lediv2 Unicode version

Theorem lediv2 8915
Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
lediv2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( C  /  B )  <_  ( C  /  A ) ) )

Proof of Theorem lediv2
StepHypRef Expression
1 simp2l 1025 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  RR )
2 simp2r 1026 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  B )
31, 2gt0ap0d 8653 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B #  0 )
41, 3rerecclapd 8858 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( 1  /  B
)  e.  RR )
5 simp1l 1023 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  RR )
6 simp1r 1024 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  A )
75, 6gt0ap0d 8653 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A #  0 )
85, 7rerecclapd 8858 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( 1  /  A
)  e.  RR )
9 simp3l 1027 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  RR )
10 simp3r 1028 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  C )
11 lemul2 8881 . . 3  |-  ( ( ( 1  /  B
)  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( (
1  /  B )  <_  ( 1  /  A )  <->  ( C  x.  ( 1  /  B
) )  <_  ( C  x.  ( 1  /  A ) ) ) )
124, 8, 9, 10, 11syl112anc 1253 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( 1  /  B )  <_  (
1  /  A )  <-> 
( C  x.  (
1  /  B ) )  <_  ( C  x.  ( 1  /  A
) ) ) )
13 lerec 8908 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <_  B  <->  ( 1  /  B )  <_  ( 1  /  A ) ) )
14133adant3 1019 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( 1  /  B )  <_  ( 1  /  A ) ) )
159recnd 8053 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  CC )
161recnd 8053 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  CC )
1715, 16, 3divrecapd 8817 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( C  /  B
)  =  ( C  x.  ( 1  /  B ) ) )
185recnd 8053 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  CC )
1915, 18, 7divrecapd 8817 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( C  /  A
)  =  ( C  x.  ( 1  /  A ) ) )
2017, 19breq12d 4046 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  /  B )  <_  ( C  /  A )  <->  ( C  x.  ( 1  /  B
) )  <_  ( C  x.  ( 1  /  A ) ) ) )
2112, 14, 203bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B )  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( C  /  B )  <_  ( C  /  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7876   0cc0 7877   1c1 7878    x. cmul 7882    < clt 8059    <_ cle 8060    / cdiv 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697
This theorem is referenced by:  lediv2d  9793  nnledivrp  9838  isprm6  12291  divdenle  12341  znidomb  14190
  Copyright terms: Public domain W3C validator