ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2msq1 Unicode version

Theorem lt2msq1 8780
Description: Lemma for lt2msq 8781. (Contributed by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lt2msq1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  x.  A )  <  ( B  x.  B )
)

Proof of Theorem lt2msq1
StepHypRef Expression
1 simp1l 1011 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
21, 1remulcld 7929 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  x.  A )  e.  RR )
3 simp2 988 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
43, 1remulcld 7929 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( B  x.  A )  e.  RR )
53, 3remulcld 7929 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( B  x.  B )  e.  RR )
6 simp1 987 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  e.  RR  /\  0  <_  A ) )
7 simp3 989 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  A  <  B
)
81, 3, 7ltled 8017 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  A  <_  B
)
9 lemul1a 8753 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <_  A )
)  /\  A  <_  B )  ->  ( A  x.  A )  <_  ( B  x.  A )
)
101, 3, 6, 8, 9syl31anc 1231 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  x.  A )  <_  ( B  x.  A )
)
11 0red 7900 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  0  e.  RR )
12 simp1r 1012 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  0  <_  A
)
1311, 1, 3, 12, 7lelttrd 8023 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  0  <  B
)
14 ltmul2 8751 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( A  <  B  <->  ( B  x.  A )  <  ( B  x.  B ) ) )
151, 3, 3, 13, 14syl112anc 1232 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  < 
B  <->  ( B  x.  A )  <  ( B  x.  B )
) )
167, 15mpbid 146 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( B  x.  A )  <  ( B  x.  B )
)
172, 4, 5, 10, 16lelttrd 8023 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  x.  A )  <  ( B  x.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    x. cmul 7758    < clt 7933    <_ cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by:  lt2msq  8781
  Copyright terms: Public domain W3C validator