ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmexpb Unicode version

Theorem prmexpb 12588
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
prmexpb  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  <->  ( P  =  Q  /\  M  =  N ) ) )

Proof of Theorem prmexpb
StepHypRef Expression
1 prmz 12548 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
21adantr 276 . . . . . . 7  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  P  e.  ZZ )
323ad2ant1 1021 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  ZZ )
4 simp2l 1026 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  e.  NN )
5 iddvdsexp 12241 . . . . . 6  |-  ( ( P  e.  ZZ  /\  M  e.  NN )  ->  P  ||  ( P ^ M ) )
63, 4, 5syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  ||  ( P ^ M ) )
7 breq2 4063 . . . . . . 7  |-  ( ( P ^ M )  =  ( Q ^ N )  ->  ( P  ||  ( P ^ M )  <->  P  ||  ( Q ^ N ) ) )
873ad2ant3 1023 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( P ^ M
)  <->  P  ||  ( Q ^ N ) ) )
9 simp1l 1024 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  Prime )
10 simp1r 1025 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  Q  e.  Prime )
11 simp2r 1027 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  N  e.  NN )
12 prmdvdsexpb 12586 . . . . . . 7  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  N  e.  NN )  ->  ( P 
||  ( Q ^ N )  <->  P  =  Q ) )
139, 10, 11, 12syl3anc 1250 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( Q ^ N
)  <->  P  =  Q
) )
148, 13bitrd 188 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( P ^ M
)  <->  P  =  Q
) )
156, 14mpbid 147 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  =  Q )
163zred 9530 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  RR )
174nnzd 9529 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  e.  ZZ )
1811nnzd 9529 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  N  e.  ZZ )
19 prmgt1 12569 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
2019ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  1  <  P )
21203adant3 1020 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  1  <  P )
22 simp3 1002 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ M )  =  ( Q ^ N ) )
2315oveq1d 5982 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ N )  =  ( Q ^ N ) )
2422, 23eqtr4d 2243 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ M )  =  ( P ^ N ) )
2516, 17, 18, 21, 24expcand 10899 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  =  N )
2615, 25jca 306 . . 3  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  =  Q  /\  M  =  N ) )
27263expia 1208 . 2  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  ->  ( P  =  Q  /\  M  =  N ) ) )
28 oveq12 5976 . 2  |-  ( ( P  =  Q  /\  M  =  N )  ->  ( P ^ M
)  =  ( Q ^ N ) )
2927, 28impbid1 142 1  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  <->  ( P  =  Q  /\  M  =  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   1c1 7961    < clt 8142   NNcn 9071   ZZcz 9407   ^cexp 10720    || cdvds 12213   Primecprime 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator