ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmexpb Unicode version

Theorem prmexpb 12005
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
prmexpb  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  <->  ( P  =  Q  /\  M  =  N ) ) )

Proof of Theorem prmexpb
StepHypRef Expression
1 prmz 11968 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
21adantr 274 . . . . . . 7  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  P  e.  ZZ )
323ad2ant1 1003 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  ZZ )
4 simp2l 1008 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  e.  NN )
5 iddvdsexp 11692 . . . . . 6  |-  ( ( P  e.  ZZ  /\  M  e.  NN )  ->  P  ||  ( P ^ M ) )
63, 4, 5syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  ||  ( P ^ M ) )
7 breq2 3969 . . . . . . 7  |-  ( ( P ^ M )  =  ( Q ^ N )  ->  ( P  ||  ( P ^ M )  <->  P  ||  ( Q ^ N ) ) )
873ad2ant3 1005 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( P ^ M
)  <->  P  ||  ( Q ^ N ) ) )
9 simp1l 1006 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  Prime )
10 simp1r 1007 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  Q  e.  Prime )
11 simp2r 1009 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  N  e.  NN )
12 prmdvdsexpb 12003 . . . . . . 7  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  N  e.  NN )  ->  ( P 
||  ( Q ^ N )  <->  P  =  Q ) )
139, 10, 11, 12syl3anc 1220 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( Q ^ N
)  <->  P  =  Q
) )
148, 13bitrd 187 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( P ^ M
)  <->  P  =  Q
) )
156, 14mpbid 146 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  =  Q )
163zred 9269 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  RR )
174nnzd 9268 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  e.  ZZ )
1811nnzd 9268 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  N  e.  ZZ )
19 prmgt1 11988 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
2019ad2antrr 480 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  1  <  P )
21203adant3 1002 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  1  <  P )
22 simp3 984 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ M )  =  ( Q ^ N ) )
2315oveq1d 5833 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ N )  =  ( Q ^ N ) )
2422, 23eqtr4d 2193 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ M )  =  ( P ^ N ) )
2516, 17, 18, 21, 24expcand 10573 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  =  N )
2615, 25jca 304 . . 3  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  =  Q  /\  M  =  N ) )
27263expia 1187 . 2  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  ->  ( P  =  Q  /\  M  =  N ) ) )
28 oveq12 5827 . 2  |-  ( ( P  =  Q  /\  M  =  N )  ->  ( P ^ M
)  =  ( Q ^ N ) )
2927, 28impbid1 141 1  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  <->  ( P  =  Q  /\  M  =  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3965  (class class class)co 5818   1c1 7716    < clt 7895   NNcn 8816   ZZcz 9150   ^cexp 10400    || cdvds 11665   Primecprime 11964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-1o 6357  df-2o 6358  df-er 6473  df-en 6679  df-sup 6920  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-fl 10151  df-mod 10204  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-dvds 11666  df-gcd 11811  df-prm 11965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator