ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmexpb Unicode version

Theorem prmexpb 12083
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
prmexpb  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  <->  ( P  =  Q  /\  M  =  N ) ) )

Proof of Theorem prmexpb
StepHypRef Expression
1 prmz 12043 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
21adantr 274 . . . . . . 7  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  P  e.  ZZ )
323ad2ant1 1008 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  ZZ )
4 simp2l 1013 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  e.  NN )
5 iddvdsexp 11755 . . . . . 6  |-  ( ( P  e.  ZZ  /\  M  e.  NN )  ->  P  ||  ( P ^ M ) )
63, 4, 5syl2anc 409 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  ||  ( P ^ M ) )
7 breq2 3986 . . . . . . 7  |-  ( ( P ^ M )  =  ( Q ^ N )  ->  ( P  ||  ( P ^ M )  <->  P  ||  ( Q ^ N ) ) )
873ad2ant3 1010 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( P ^ M
)  <->  P  ||  ( Q ^ N ) ) )
9 simp1l 1011 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  Prime )
10 simp1r 1012 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  Q  e.  Prime )
11 simp2r 1014 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  N  e.  NN )
12 prmdvdsexpb 12081 . . . . . . 7  |-  ( ( P  e.  Prime  /\  Q  e.  Prime  /\  N  e.  NN )  ->  ( P 
||  ( Q ^ N )  <->  P  =  Q ) )
139, 10, 11, 12syl3anc 1228 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( Q ^ N
)  <->  P  =  Q
) )
148, 13bitrd 187 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  ||  ( P ^ M
)  <->  P  =  Q
) )
156, 14mpbid 146 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  =  Q )
163zred 9313 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  P  e.  RR )
174nnzd 9312 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  e.  ZZ )
1811nnzd 9312 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  N  e.  ZZ )
19 prmgt1 12064 . . . . . . 7  |-  ( P  e.  Prime  ->  1  < 
P )
2019ad2antrr 480 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  1  <  P )
21203adant3 1007 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  1  <  P )
22 simp3 989 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ M )  =  ( Q ^ N ) )
2315oveq1d 5857 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ N )  =  ( Q ^ N ) )
2422, 23eqtr4d 2201 . . . . 5  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P ^ M )  =  ( P ^ N ) )
2516, 17, 18, 21, 24expcand 10630 . . . 4  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  M  =  N )
2615, 25jca 304 . . 3  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN )  /\  ( P ^ M )  =  ( Q ^ N ) )  ->  ( P  =  Q  /\  M  =  N ) )
27263expia 1195 . 2  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  ->  ( P  =  Q  /\  M  =  N ) ) )
28 oveq12 5851 . 2  |-  ( ( P  =  Q  /\  M  =  N )  ->  ( P ^ M
)  =  ( Q ^ N ) )
2927, 28impbid1 141 1  |-  ( ( ( P  e.  Prime  /\  Q  e.  Prime )  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  ( ( P ^ M )  =  ( Q ^ N
)  <->  ( P  =  Q  /\  M  =  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   1c1 7754    < clt 7933   NNcn 8857   ZZcz 9191   ^cexp 10454    || cdvds 11727   Primecprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator