ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hash2iun1dif1 Unicode version

Theorem hash2iun1dif1 11824
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a  |-  ( ph  ->  A  e.  Fin )
hash2iun1dif1.b  |-  B  =  ( A  \  {
x } )
hash2iun1dif1.c  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  Fin )
hash2iun1dif1.da  |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )
hash2iun1dif1.db  |-  ( (
ph  /\  x  e.  A )  -> Disj  y  e.  B  C )
hash2iun1dif1.1  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  ( `  C
)  =  1 )
Assertion
Ref Expression
hash2iun1dif1  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
Distinct variable groups:    x, A, y   
y, B    ph, x, y
Allowed substitution hints:    B( x)    C( x, y)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 hash2iun1dif1.b . . . 4  |-  B  =  ( A  \  {
x } )
31adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A  e.  Fin )
4 snfig 6908 . . . . . 6  |-  ( x  e.  A  ->  { x }  e.  Fin )
54adantl 277 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { x }  e.  Fin )
6 snssi 3777 . . . . . 6  |-  ( x  e.  A  ->  { x }  C_  A )
76adantl 277 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { x }  C_  A )
8 diffifi 6993 . . . . 5  |-  ( ( A  e.  Fin  /\  { x }  e.  Fin  /\ 
{ x }  C_  A )  ->  ( A  \  { x }
)  e.  Fin )
93, 5, 7, 8syl3anc 1250 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( A  \  { x }
)  e.  Fin )
102, 9eqeltrid 2292 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
11 hash2iun1dif1.c . . 3  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  Fin )
12 hash2iun1dif1.da . . 3  |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )
13 hash2iun1dif1.db . . 3  |-  ( (
ph  /\  x  e.  A )  -> Disj  y  e.  B  C )
141, 10, 11, 12, 13hash2iun 11823 . 2  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  = 
sum_ x  e.  A  sum_ y  e.  B  ( `  C ) )
15 hash2iun1dif1.1 . . 3  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  ( `  C
)  =  1 )
16152sumeq2dv 11715 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  ( `  C )  =  sum_ x  e.  A  sum_ y  e.  B  1 )
17 1cnd 8090 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  1  e.  CC )
18 fsumconst 11798 . . . . 5  |-  ( ( B  e.  Fin  /\  1  e.  CC )  -> 
sum_ y  e.  B 
1  =  ( ( `  B )  x.  1 ) )
1910, 17, 18syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  sum_ y  e.  B  1  =  ( ( `  B )  x.  1 ) )
2019sumeq2dv 11712 . . 3  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  1  =  sum_ x  e.  A  ( ( `  B )  x.  1 ) )
212a1i 9 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( A  \  { x } ) )
2221fveq2d 5582 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `  B )  =  ( `  ( A  \  {
x } ) ) )
23 hashdifsn 10966 . . . . . . 7  |-  ( ( A  e.  Fin  /\  x  e.  A )  ->  ( `  ( A  \  { x } ) )  =  ( ( `  A )  -  1 ) )
241, 23sylan 283 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `  ( A  \  {
x } ) )  =  ( ( `  A
)  -  1 ) )
2522, 24eqtrd 2238 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( `  B )  =  ( ( `  A )  -  1 ) )
2625oveq1d 5961 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( `  B )  x.  1 )  =  ( ( ( `  A
)  -  1 )  x.  1 ) )
2726sumeq2dv 11712 . . 3  |-  ( ph  -> 
sum_ x  e.  A  ( ( `  B )  x.  1 )  =  sum_ x  e.  A  ( ( ( `  A )  -  1 )  x.  1 ) )
28 hashcl 10928 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
291, 28syl 14 . . . . . . . 8  |-  ( ph  ->  ( `  A )  e.  NN0 )
3029nn0cnd 9352 . . . . . . 7  |-  ( ph  ->  ( `  A )  e.  CC )
31 peano2cnm 8340 . . . . . . 7  |-  ( ( `  A )  e.  CC  ->  ( ( `  A
)  -  1 )  e.  CC )
3230, 31syl 14 . . . . . 6  |-  ( ph  ->  ( ( `  A
)  -  1 )  e.  CC )
3332mulridd 8091 . . . . 5  |-  ( ph  ->  ( ( ( `  A
)  -  1 )  x.  1 )  =  ( ( `  A
)  -  1 ) )
3433sumeq2ad 11713 . . . 4  |-  ( ph  -> 
sum_ x  e.  A  ( ( ( `  A
)  -  1 )  x.  1 )  = 
sum_ x  e.  A  ( ( `  A )  -  1 ) )
35 fsumconst 11798 . . . . 5  |-  ( ( A  e.  Fin  /\  ( ( `  A )  -  1 )  e.  CC )  ->  sum_ x  e.  A  ( ( `  A )  -  1 )  =  ( ( `  A )  x.  (
( `  A )  - 
1 ) ) )
361, 32, 35syl2anc 411 . . . 4  |-  ( ph  -> 
sum_ x  e.  A  ( ( `  A )  -  1 )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3734, 36eqtrd 2238 . . 3  |-  ( ph  -> 
sum_ x  e.  A  ( ( ( `  A
)  -  1 )  x.  1 )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3820, 27, 373eqtrd 2242 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  1  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3914, 16, 383eqtrd 2242 1  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    \ cdif 3163    C_ wss 3166   {csn 3633   U_ciun 3927  Disj wdisj 4021   ` cfv 5272  (class class class)co 5946   Fincfn 6829   CCcc 7925   1c1 7928    x. cmul 7932    - cmin 8245   NN0cn0 9297  ♯chash 10922   sum_csu 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator