ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hash2iun1dif1 Unicode version

Theorem hash2iun1dif1 11597
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a  |-  ( ph  ->  A  e.  Fin )
hash2iun1dif1.b  |-  B  =  ( A  \  {
x } )
hash2iun1dif1.c  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  Fin )
hash2iun1dif1.da  |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )
hash2iun1dif1.db  |-  ( (
ph  /\  x  e.  A )  -> Disj  y  e.  B  C )
hash2iun1dif1.1  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  ( `  C
)  =  1 )
Assertion
Ref Expression
hash2iun1dif1  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
Distinct variable groups:    x, A, y   
y, B    ph, x, y
Allowed substitution hints:    B( x)    C( x, y)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 hash2iun1dif1.b . . . 4  |-  B  =  ( A  \  {
x } )
31adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A  e.  Fin )
4 snfig 6855 . . . . . 6  |-  ( x  e.  A  ->  { x }  e.  Fin )
54adantl 277 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { x }  e.  Fin )
6 snssi 3758 . . . . . 6  |-  ( x  e.  A  ->  { x }  C_  A )
76adantl 277 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { x }  C_  A )
8 diffifi 6937 . . . . 5  |-  ( ( A  e.  Fin  /\  { x }  e.  Fin  /\ 
{ x }  C_  A )  ->  ( A  \  { x }
)  e.  Fin )
93, 5, 7, 8syl3anc 1249 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( A  \  { x }
)  e.  Fin )
102, 9eqeltrid 2276 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
11 hash2iun1dif1.c . . 3  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  Fin )
12 hash2iun1dif1.da . . 3  |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )
13 hash2iun1dif1.db . . 3  |-  ( (
ph  /\  x  e.  A )  -> Disj  y  e.  B  C )
141, 10, 11, 12, 13hash2iun 11596 . 2  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  = 
sum_ x  e.  A  sum_ y  e.  B  ( `  C ) )
15 hash2iun1dif1.1 . . 3  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  ( `  C
)  =  1 )
16152sumeq2dv 11488 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  ( `  C )  =  sum_ x  e.  A  sum_ y  e.  B  1 )
17 1cnd 8021 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  1  e.  CC )
18 fsumconst 11571 . . . . 5  |-  ( ( B  e.  Fin  /\  1  e.  CC )  -> 
sum_ y  e.  B 
1  =  ( ( `  B )  x.  1 ) )
1910, 17, 18syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  sum_ y  e.  B  1  =  ( ( `  B )  x.  1 ) )
2019sumeq2dv 11485 . . 3  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  1  =  sum_ x  e.  A  ( ( `  B )  x.  1 ) )
212a1i 9 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( A  \  { x } ) )
2221fveq2d 5546 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `  B )  =  ( `  ( A  \  {
x } ) ) )
23 hashdifsn 10864 . . . . . . 7  |-  ( ( A  e.  Fin  /\  x  e.  A )  ->  ( `  ( A  \  { x } ) )  =  ( ( `  A )  -  1 ) )
241, 23sylan 283 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `  ( A  \  {
x } ) )  =  ( ( `  A
)  -  1 ) )
2522, 24eqtrd 2222 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( `  B )  =  ( ( `  A )  -  1 ) )
2625oveq1d 5921 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( `  B )  x.  1 )  =  ( ( ( `  A
)  -  1 )  x.  1 ) )
2726sumeq2dv 11485 . . 3  |-  ( ph  -> 
sum_ x  e.  A  ( ( `  B )  x.  1 )  =  sum_ x  e.  A  ( ( ( `  A )  -  1 )  x.  1 ) )
28 hashcl 10826 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
291, 28syl 14 . . . . . . . 8  |-  ( ph  ->  ( `  A )  e.  NN0 )
3029nn0cnd 9281 . . . . . . 7  |-  ( ph  ->  ( `  A )  e.  CC )
31 peano2cnm 8271 . . . . . . 7  |-  ( ( `  A )  e.  CC  ->  ( ( `  A
)  -  1 )  e.  CC )
3230, 31syl 14 . . . . . 6  |-  ( ph  ->  ( ( `  A
)  -  1 )  e.  CC )
3332mulridd 8022 . . . . 5  |-  ( ph  ->  ( ( ( `  A
)  -  1 )  x.  1 )  =  ( ( `  A
)  -  1 ) )
3433sumeq2ad 11486 . . . 4  |-  ( ph  -> 
sum_ x  e.  A  ( ( ( `  A
)  -  1 )  x.  1 )  = 
sum_ x  e.  A  ( ( `  A )  -  1 ) )
35 fsumconst 11571 . . . . 5  |-  ( ( A  e.  Fin  /\  ( ( `  A )  -  1 )  e.  CC )  ->  sum_ x  e.  A  ( ( `  A )  -  1 )  =  ( ( `  A )  x.  (
( `  A )  - 
1 ) ) )
361, 32, 35syl2anc 411 . . . 4  |-  ( ph  -> 
sum_ x  e.  A  ( ( `  A )  -  1 )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3734, 36eqtrd 2222 . . 3  |-  ( ph  -> 
sum_ x  e.  A  ( ( ( `  A
)  -  1 )  x.  1 )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3820, 27, 373eqtrd 2226 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  1  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3914, 16, 383eqtrd 2226 1  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160    \ cdif 3146    C_ wss 3149   {csn 3614   U_ciun 3908  Disj wdisj 4002   ` cfv 5242  (class class class)co 5906   Fincfn 6781   CCcc 7856   1c1 7859    x. cmul 7863    - cmin 8176   NN0cn0 9226  ♯chash 10820   sum_csu 11470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976  ax-arch 7977  ax-caucvg 7978
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-if 3554  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-disj 4003  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-po 4321  df-iso 4322  df-iord 4391  df-on 4393  df-ilim 4394  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-isom 5251  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-recs 6345  df-irdg 6410  df-frec 6431  df-1o 6456  df-oadd 6460  df-er 6574  df-en 6782  df-dom 6783  df-fin 6784  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-2 9027  df-3 9028  df-4 9029  df-n0 9227  df-z 9304  df-uz 9579  df-q 9671  df-rp 9706  df-fz 10061  df-fzo 10195  df-seqfrec 10505  df-exp 10584  df-ihash 10821  df-cj 10960  df-re 10961  df-im 10962  df-rsqrt 11116  df-abs 11117  df-clim 11396  df-sumdc 11471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator