ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hash2iun1dif1 Unicode version

Theorem hash2iun1dif1 11281
Description: The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
hash2iun1dif1.a  |-  ( ph  ->  A  e.  Fin )
hash2iun1dif1.b  |-  B  =  ( A  \  {
x } )
hash2iun1dif1.c  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  Fin )
hash2iun1dif1.da  |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )
hash2iun1dif1.db  |-  ( (
ph  /\  x  e.  A )  -> Disj  y  e.  B  C )
hash2iun1dif1.1  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  ( `  C
)  =  1 )
Assertion
Ref Expression
hash2iun1dif1  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
Distinct variable groups:    x, A, y   
y, B    ph, x, y
Allowed substitution hints:    B( x)    C( x, y)

Proof of Theorem hash2iun1dif1
StepHypRef Expression
1 hash2iun1dif1.a . . 3  |-  ( ph  ->  A  e.  Fin )
2 hash2iun1dif1.b . . . 4  |-  B  =  ( A  \  {
x } )
31adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  A  e.  Fin )
4 snfig 6716 . . . . . 6  |-  ( x  e.  A  ->  { x }  e.  Fin )
54adantl 275 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { x }  e.  Fin )
6 snssi 3672 . . . . . 6  |-  ( x  e.  A  ->  { x }  C_  A )
76adantl 275 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { x }  C_  A )
8 diffifi 6796 . . . . 5  |-  ( ( A  e.  Fin  /\  { x }  e.  Fin  /\ 
{ x }  C_  A )  ->  ( A  \  { x }
)  e.  Fin )
93, 5, 7, 8syl3anc 1217 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( A  \  { x }
)  e.  Fin )
102, 9eqeltrid 2227 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
11 hash2iun1dif1.c . . 3  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  C  e.  Fin )
12 hash2iun1dif1.da . . 3  |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )
13 hash2iun1dif1.db . . 3  |-  ( (
ph  /\  x  e.  A )  -> Disj  y  e.  B  C )
141, 10, 11, 12, 13hash2iun 11280 . 2  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  = 
sum_ x  e.  A  sum_ y  e.  B  ( `  C ) )
15 hash2iun1dif1.1 . . 3  |-  ( (
ph  /\  x  e.  A  /\  y  e.  B
)  ->  ( `  C
)  =  1 )
16152sumeq2dv 11172 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  ( `  C )  =  sum_ x  e.  A  sum_ y  e.  B  1 )
17 1cnd 7806 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  1  e.  CC )
18 fsumconst 11255 . . . . 5  |-  ( ( B  e.  Fin  /\  1  e.  CC )  -> 
sum_ y  e.  B 
1  =  ( ( `  B )  x.  1 ) )
1910, 17, 18syl2anc 409 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  sum_ y  e.  B  1  =  ( ( `  B )  x.  1 ) )
2019sumeq2dv 11169 . . 3  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  1  =  sum_ x  e.  A  ( ( `  B )  x.  1 ) )
212a1i 9 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( A  \  { x } ) )
2221fveq2d 5433 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `  B )  =  ( `  ( A  \  {
x } ) ) )
23 hashdifsn 10597 . . . . . . 7  |-  ( ( A  e.  Fin  /\  x  e.  A )  ->  ( `  ( A  \  { x } ) )  =  ( ( `  A )  -  1 ) )
241, 23sylan 281 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `  ( A  \  {
x } ) )  =  ( ( `  A
)  -  1 ) )
2522, 24eqtrd 2173 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( `  B )  =  ( ( `  A )  -  1 ) )
2625oveq1d 5797 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( `  B )  x.  1 )  =  ( ( ( `  A
)  -  1 )  x.  1 ) )
2726sumeq2dv 11169 . . 3  |-  ( ph  -> 
sum_ x  e.  A  ( ( `  B )  x.  1 )  =  sum_ x  e.  A  ( ( ( `  A )  -  1 )  x.  1 ) )
28 hashcl 10559 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
291, 28syl 14 . . . . . . . 8  |-  ( ph  ->  ( `  A )  e.  NN0 )
3029nn0cnd 9056 . . . . . . 7  |-  ( ph  ->  ( `  A )  e.  CC )
31 peano2cnm 8052 . . . . . . 7  |-  ( ( `  A )  e.  CC  ->  ( ( `  A
)  -  1 )  e.  CC )
3230, 31syl 14 . . . . . 6  |-  ( ph  ->  ( ( `  A
)  -  1 )  e.  CC )
3332mulid1d 7807 . . . . 5  |-  ( ph  ->  ( ( ( `  A
)  -  1 )  x.  1 )  =  ( ( `  A
)  -  1 ) )
3433sumeq2ad 11170 . . . 4  |-  ( ph  -> 
sum_ x  e.  A  ( ( ( `  A
)  -  1 )  x.  1 )  = 
sum_ x  e.  A  ( ( `  A )  -  1 ) )
35 fsumconst 11255 . . . . 5  |-  ( ( A  e.  Fin  /\  ( ( `  A )  -  1 )  e.  CC )  ->  sum_ x  e.  A  ( ( `  A )  -  1 )  =  ( ( `  A )  x.  (
( `  A )  - 
1 ) ) )
361, 32, 35syl2anc 409 . . . 4  |-  ( ph  -> 
sum_ x  e.  A  ( ( `  A )  -  1 )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3734, 36eqtrd 2173 . . 3  |-  ( ph  -> 
sum_ x  e.  A  ( ( ( `  A
)  -  1 )  x.  1 )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3820, 27, 373eqtrd 2177 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ y  e.  B  1  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
3914, 16, 383eqtrd 2177 1  |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A
)  x.  ( ( `  A )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481    \ cdif 3073    C_ wss 3076   {csn 3532   U_ciun 3821  Disj wdisj 3914   ` cfv 5131  (class class class)co 5782   Fincfn 6642   CCcc 7642   1c1 7645    x. cmul 7649    - cmin 7957   NN0cn0 9001  ♯chash 10553   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator