ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg1 Unicode version

Theorem mulneg1 8502
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulneg1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )

Proof of Theorem mulneg1
StepHypRef Expression
1 0cn 8099 . . . 4  |-  0  e.  CC
2 subdir 8493 . . . 4  |-  ( ( 0  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( 0  -  A
)  x.  B )  =  ( ( 0  x.  B )  -  ( A  x.  B
) ) )
31, 2mp3an1 1337 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 0  -  A )  x.  B
)  =  ( ( 0  x.  B )  -  ( A  x.  B ) ) )
4 simpr 110 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54mul02d 8499 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
65oveq1d 5982 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 0  x.  B )  -  ( A  x.  B )
)  =  ( 0  -  ( A  x.  B ) ) )
73, 6eqtrd 2240 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 0  -  A )  x.  B
)  =  ( 0  -  ( A  x.  B ) ) )
8 df-neg 8281 . . 3  |-  -u A  =  ( 0  -  A )
98oveq1i 5977 . 2  |-  ( -u A  x.  B )  =  ( ( 0  -  A )  x.  B )
10 df-neg 8281 . 2  |-  -u ( A  x.  B )  =  ( 0  -  ( A  x.  B
) )
117, 9, 103eqtr4g 2265 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  x.  B )  =  -u ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   0cc0 7960    x. cmul 7965    - cmin 8278   -ucneg 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-neg 8281
This theorem is referenced by:  mulneg2  8503  mulneg12  8504  mulm1  8507  mulneg1i  8511  mulneg1d  8518  divnegap  8814  zmulcl  9461  cjreim  11329  tanval3ap  12140  dvdsnegb  12234  odd2np1  12299  modgcd  12427  pcexp  12747  cnfldmulg  14453  sinperlem  15395
  Copyright terms: Public domain W3C validator