| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toptopon2 | GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 14686 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 ∪ cuni 3887 ‘cfv 5317 Topctop 14665 TopOnctopon 14678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-topon 14679 |
| This theorem is referenced by: topontopon 14688 lmreltop 14861 cnovex 14864 cnptopco 14890 cnptopresti 14906 lmtopcnp 14918 lmcn 14919 txcnmpt 14941 txdis1cn 14946 lmcn2 14948 cnmpt1t 14953 cnmpt12 14955 cnmpt21 14959 cnmpt21f 14960 cnmpt2t 14961 cnmpt22 14962 cnmpt22f 14963 cnmptcom 14966 limccnp2lem 15344 limccnp2cntop 15345 |
| Copyright terms: Public domain | W3C validator |