ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toptopon2 GIF version

Theorem toptopon2 14576
Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
toptopon2 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))

Proof of Theorem toptopon2
StepHypRef Expression
1 eqid 2206 . 2 𝐽 = 𝐽
21toptopon 14575 1 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2177   cuni 3859  cfv 5285  Topctop 14554  TopOnctopon 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-topon 14568
This theorem is referenced by:  topontopon  14577  lmreltop  14750  cnovex  14753  cnptopco  14779  cnptopresti  14795  lmtopcnp  14807  lmcn  14808  txcnmpt  14830  txdis1cn  14835  lmcn2  14837  cnmpt1t  14842  cnmpt12  14844  cnmpt21  14848  cnmpt21f  14849  cnmpt2t  14850  cnmpt22  14851  cnmpt22f  14852  cnmptcom  14855  limccnp2lem  15233  limccnp2cntop  15234
  Copyright terms: Public domain W3C validator