| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toptopon2 | GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 14490 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2176 ∪ cuni 3850 ‘cfv 5271 Topctop 14469 TopOnctopon 14482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-topon 14483 |
| This theorem is referenced by: topontopon 14492 lmreltop 14665 cnovex 14668 cnptopco 14694 cnptopresti 14710 lmtopcnp 14722 lmcn 14723 txcnmpt 14745 txdis1cn 14750 lmcn2 14752 cnmpt1t 14757 cnmpt12 14759 cnmpt21 14763 cnmpt21f 14764 cnmpt2t 14765 cnmpt22 14766 cnmpt22f 14767 cnmptcom 14770 limccnp2lem 15148 limccnp2cntop 15149 |
| Copyright terms: Public domain | W3C validator |