ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toptopon2 GIF version

Theorem toptopon2 14198
Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
toptopon2 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))

Proof of Theorem toptopon2
StepHypRef Expression
1 eqid 2193 . 2 𝐽 = 𝐽
21toptopon 14197 1 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164   cuni 3836  cfv 5255  Topctop 14176  TopOnctopon 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-topon 14190
This theorem is referenced by:  topontopon  14199  lmreltop  14372  cnovex  14375  cnptopco  14401  cnptopresti  14417  lmtopcnp  14429  lmcn  14430  txcnmpt  14452  txdis1cn  14457  lmcn2  14459  cnmpt1t  14464  cnmpt12  14466  cnmpt21  14470  cnmpt21f  14471  cnmpt2t  14472  cnmpt22  14473  cnmpt22f  14474  cnmptcom  14477  limccnp2lem  14855  limccnp2cntop  14856
  Copyright terms: Public domain W3C validator