ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn Unicode version

Theorem lmcn 12891
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcn.4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
lmcn  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )

Proof of Theorem lmcn
StepHypRef Expression
1 lmcnp.3 . 2  |-  ( ph  ->  F ( ~~> t `  J ) P )
2 lmcn.4 . . 3  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
3 cntop2 12842 . . 3  |-  ( G  e.  ( J  Cn  K )  ->  K  e.  Top )
42, 3syl 14 . 2  |-  ( ph  ->  K  e.  Top )
5 cntop1 12841 . . . . . 6  |-  ( G  e.  ( J  Cn  K )  ->  J  e.  Top )
62, 5syl 14 . . . . 5  |-  ( ph  ->  J  e.  Top )
7 toptopon2 12657 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
86, 7sylib 121 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
9 lmcl 12885 . . . 4  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  P  e.  U. J )
108, 1, 9syl2anc 409 . . 3  |-  ( ph  ->  P  e.  U. J
)
11 eqid 2165 . . . 4  |-  U. J  =  U. J
1211cncnpi 12868 . . 3  |-  ( ( G  e.  ( J  Cn  K )  /\  P  e.  U. J )  ->  G  e.  ( ( J  CnP  K
) `  P )
)
132, 10, 12syl2anc 409 . 2  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
141, 4, 13lmtopcnp 12890 1  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   U.cuni 3789   class class class wbr 3982    o. ccom 4608   ` cfv 5188  (class class class)co 5842   Topctop 12635  TopOnctopon 12648    Cn ccn 12825    CnP ccnp 12826   ~~> tclm 12827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pm 6617  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-top 12636  df-topon 12649  df-cn 12828  df-cnp 12829  df-lm 12830
This theorem is referenced by:  lmcn2  12920
  Copyright terms: Public domain W3C validator