ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn Unicode version

Theorem lmcn 14497
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcn.4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
lmcn  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )

Proof of Theorem lmcn
StepHypRef Expression
1 lmcnp.3 . 2  |-  ( ph  ->  F ( ~~> t `  J ) P )
2 lmcn.4 . . 3  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
3 cntop2 14448 . . 3  |-  ( G  e.  ( J  Cn  K )  ->  K  e.  Top )
42, 3syl 14 . 2  |-  ( ph  ->  K  e.  Top )
5 cntop1 14447 . . . . . 6  |-  ( G  e.  ( J  Cn  K )  ->  J  e.  Top )
62, 5syl 14 . . . . 5  |-  ( ph  ->  J  e.  Top )
7 toptopon2 14265 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
86, 7sylib 122 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
9 lmcl 14491 . . . 4  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  P  e.  U. J )
108, 1, 9syl2anc 411 . . 3  |-  ( ph  ->  P  e.  U. J
)
11 eqid 2196 . . . 4  |-  U. J  =  U. J
1211cncnpi 14474 . . 3  |-  ( ( G  e.  ( J  Cn  K )  /\  P  e.  U. J )  ->  G  e.  ( ( J  CnP  K
) `  P )
)
132, 10, 12syl2anc 411 . 2  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
141, 4, 13lmtopcnp 14496 1  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   U.cuni 3840   class class class wbr 4034    o. ccom 4668   ` cfv 5259  (class class class)co 5923   Topctop 14243  TopOnctopon 14256    Cn ccn 14431    CnP ccnp 14432   ~~> tclm 14433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-map 6710  df-pm 6711  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-top 14244  df-topon 14257  df-cn 14434  df-cnp 14435  df-lm 14436
This theorem is referenced by:  lmcn2  14526
  Copyright terms: Public domain W3C validator