ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn Unicode version

Theorem lmcn 14933
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcn.4  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
Assertion
Ref Expression
lmcn  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )

Proof of Theorem lmcn
StepHypRef Expression
1 lmcnp.3 . 2  |-  ( ph  ->  F ( ~~> t `  J ) P )
2 lmcn.4 . . 3  |-  ( ph  ->  G  e.  ( J  Cn  K ) )
3 cntop2 14884 . . 3  |-  ( G  e.  ( J  Cn  K )  ->  K  e.  Top )
42, 3syl 14 . 2  |-  ( ph  ->  K  e.  Top )
5 cntop1 14883 . . . . . 6  |-  ( G  e.  ( J  Cn  K )  ->  J  e.  Top )
62, 5syl 14 . . . . 5  |-  ( ph  ->  J  e.  Top )
7 toptopon2 14701 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
86, 7sylib 122 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
9 lmcl 14927 . . . 4  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  P  e.  U. J )
108, 1, 9syl2anc 411 . . 3  |-  ( ph  ->  P  e.  U. J
)
11 eqid 2229 . . . 4  |-  U. J  =  U. J
1211cncnpi 14910 . . 3  |-  ( ( G  e.  ( J  Cn  K )  /\  P  e.  U. J )  ->  G  e.  ( ( J  CnP  K
) `  P )
)
132, 10, 12syl2anc 411 . 2  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
141, 4, 13lmtopcnp 14932 1  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   U.cuni 3888   class class class wbr 4083    o. ccom 4723   ` cfv 5318  (class class class)co 6007   Topctop 14679  TopOnctopon 14692    Cn ccn 14867    CnP ccnp 14868   ~~> tclm 14869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-map 6805  df-pm 6806  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-top 14680  df-topon 14693  df-cn 14870  df-cnp 14871  df-lm 14872
This theorem is referenced by:  lmcn2  14962
  Copyright terms: Public domain W3C validator