ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetpsmet Unicode version

Theorem xmetpsmet 14548
Description: An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
xmetpsmet  |-  ( D  e.  ( *Met `  X )  ->  D  e.  (PsMet `  X )
)

Proof of Theorem xmetpsmet
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 14529 . 2  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
2 xmet0 14542 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  =  0 )
3 3anrot 985 . . . . . . . 8  |-  ( ( z  e.  X  /\  x  e.  X  /\  y  e.  X )  <->  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )
)
4 xmettri2 14540 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  ( z  e.  X  /\  x  e.  X  /\  y  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
53, 4sylan2br 288 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
653anassrs 1231 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  x  e.  X )  /\  y  e.  X )  /\  z  e.  X )  ->  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) )
76ralrimiva 2567 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  X )  /\  y  e.  X )  ->  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
87ralrimiva 2567 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
92, 8jca 306 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
109ralrimiva 2567 . 2  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) )
11 xmetrel 14522 . . . 4  |-  Rel  *Met
12 relelfvdm 5587 . . . . 5  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
1312elexd 2773 . . . 4  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  _V )
1411, 13mpan 424 . . 3  |-  ( D  e.  ( *Met `  X )  ->  X  e.  _V )
15 ispsmet 14502 . . 3  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
1614, 15syl 14 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
171, 10, 16mpbir2and 946 1  |-  ( D  e.  ( *Met `  X )  ->  D  e.  (PsMet `  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   class class class wbr 4030    X. cxp 4658   dom cdm 4660   Rel wrel 4665   -->wf 5251   ` cfv 5255  (class class class)co 5919   0cc0 7874   RR*cxr 8055    <_ cle 8057   +ecxad 9839  PsMetcpsmet 14034   *Metcxmet 14035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-psmet 14042  df-xmet 14043
This theorem is referenced by:  blfval  14565
  Copyright terms: Public domain W3C validator