Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetsym | Unicode version |
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmetsym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 987 | . . . 4 | |
2 | simp3 989 | . . . 4 | |
3 | simp2 988 | . . . 4 | |
4 | xmettri2 13001 | . . . 4 | |
5 | 1, 2, 3, 2, 4 | syl13anc 1230 | . . 3 |
6 | xmet0 13003 | . . . . . 6 | |
7 | 6 | 3adant2 1006 | . . . . 5 |
8 | 7 | oveq2d 5858 | . . . 4 |
9 | xmetcl 12992 | . . . . . 6 | |
10 | xaddid1 9798 | . . . . . 6 | |
11 | 9, 10 | syl 14 | . . . . 5 |
12 | 11 | 3com23 1199 | . . . 4 |
13 | 8, 12 | eqtrd 2198 | . . 3 |
14 | 5, 13 | breqtrd 4008 | . 2 |
15 | xmettri2 13001 | . . . 4 | |
16 | 1, 3, 2, 3, 15 | syl13anc 1230 | . . 3 |
17 | xmet0 13003 | . . . . . 6 | |
18 | 17 | 3adant3 1007 | . . . . 5 |
19 | 18 | oveq2d 5858 | . . . 4 |
20 | xmetcl 12992 | . . . . 5 | |
21 | xaddid1 9798 | . . . . 5 | |
22 | 20, 21 | syl 14 | . . . 4 |
23 | 19, 22 | eqtrd 2198 | . . 3 |
24 | 16, 23 | breqtrd 4008 | . 2 |
25 | 9 | 3com23 1199 | . . 3 |
26 | xrletri3 9740 | . . 3 | |
27 | 20, 25, 26 | syl2anc 409 | . 2 |
28 | 14, 24, 27 | mpbir2and 934 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc0 7753 cxr 7932 cle 7934 cxad 9706 cxmet 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-xadd 9709 df-xmet 12628 |
This theorem is referenced by: xmettpos 13010 metsym 13011 xmettri 13012 xmettri3 13014 elbl3 13035 blss 13068 xmeter 13076 xmssym 13109 metcnp2 13153 |
Copyright terms: Public domain | W3C validator |