| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetsym | Unicode version | ||
| Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmetsym |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . . 4
| |
| 2 | simp3 1023 |
. . . 4
| |
| 3 | simp2 1022 |
. . . 4
| |
| 4 | xmettri2 15035 |
. . . 4
| |
| 5 | 1, 2, 3, 2, 4 | syl13anc 1273 |
. . 3
|
| 6 | xmet0 15037 |
. . . . . 6
| |
| 7 | 6 | 3adant2 1040 |
. . . . 5
|
| 8 | 7 | oveq2d 6017 |
. . . 4
|
| 9 | xmetcl 15026 |
. . . . . 6
| |
| 10 | xaddid1 10058 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 11 | 3com23 1233 |
. . . 4
|
| 13 | 8, 12 | eqtrd 2262 |
. . 3
|
| 14 | 5, 13 | breqtrd 4109 |
. 2
|
| 15 | xmettri2 15035 |
. . . 4
| |
| 16 | 1, 3, 2, 3, 15 | syl13anc 1273 |
. . 3
|
| 17 | xmet0 15037 |
. . . . . 6
| |
| 18 | 17 | 3adant3 1041 |
. . . . 5
|
| 19 | 18 | oveq2d 6017 |
. . . 4
|
| 20 | xmetcl 15026 |
. . . . 5
| |
| 21 | xaddid1 10058 |
. . . . 5
| |
| 22 | 20, 21 | syl 14 |
. . . 4
|
| 23 | 19, 22 | eqtrd 2262 |
. . 3
|
| 24 | 16, 23 | breqtrd 4109 |
. 2
|
| 25 | 9 | 3com23 1233 |
. . 3
|
| 26 | xrletri3 10000 |
. . 3
| |
| 27 | 20, 25, 26 | syl2anc 411 |
. 2
|
| 28 | 14, 24, 27 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-xadd 9969 df-xmet 14508 |
| This theorem is referenced by: xmettpos 15044 metsym 15045 xmettri 15046 xmettri3 15048 elbl3 15069 blss 15102 xmeter 15110 xmssym 15143 metcnp2 15187 |
| Copyright terms: Public domain | W3C validator |