ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetsym Unicode version

Theorem xmetsym 14536
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetsym  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )

Proof of Theorem xmetsym
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  D  e.  ( *Met `  X
) )
2 simp3 1001 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  B  e.  X )
3 simp2 1000 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  A  e.  X )
4 xmettri2 14529 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( B  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( B D A ) +e ( B D B ) ) )
51, 2, 3, 2, 4syl13anc 1251 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  (
( B D A ) +e ( B D B ) ) )
6 xmet0 14531 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X
)  ->  ( B D B )  =  0 )
763adant2 1018 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D B )  =  0 )
87oveq2d 5934 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( ( B D A ) +e 0 ) )
9 xmetcl 14520 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( B D A )  e.  RR* )
10 xaddid1 9928 . . . . . 6  |-  ( ( B D A )  e.  RR*  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
119, 10syl 14 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
12113com23 1211 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
138, 12eqtrd 2226 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( B D A ) )
145, 13breqtrd 4055 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  ( B D A ) )
15 xmettri2 14529 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  A  e.  X ) )  -> 
( B D A )  <_  ( ( A D B ) +e ( A D A ) ) )
161, 3, 2, 3, 15syl13anc 1251 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  (
( A D B ) +e ( A D A ) ) )
17 xmet0 14531 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X
)  ->  ( A D A )  =  0 )
18173adant3 1019 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D A )  =  0 )
1918oveq2d 5934 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( ( A D B ) +e 0 ) )
20 xmetcl 14520 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR* )
21 xaddid1 9928 . . . . 5  |-  ( ( A D B )  e.  RR*  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2220, 21syl 14 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2319, 22eqtrd 2226 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( A D B ) )
2416, 23breqtrd 4055 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  ( A D B ) )
2593com23 1211 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  e.  RR* )
26 xrletri3 9870 . . 3  |-  ( ( ( A D B )  e.  RR*  /\  ( B D A )  e. 
RR* )  ->  (
( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2720, 25, 26syl2anc 411 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2814, 24, 27mpbir2and 946 1  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   0cc0 7872   RR*cxr 8053    <_ cle 8055   +ecxad 9836   *Metcxmet 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-xadd 9839  df-xmet 14040
This theorem is referenced by:  xmettpos  14538  metsym  14539  xmettri  14540  xmettri3  14542  elbl3  14563  blss  14596  xmeter  14604  xmssym  14637  metcnp2  14681
  Copyright terms: Public domain W3C validator