ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetsym Unicode version

Theorem xmetsym 13162
Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetsym  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )

Proof of Theorem xmetsym
StepHypRef Expression
1 simp1 992 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  D  e.  ( *Met `  X
) )
2 simp3 994 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  B  e.  X )
3 simp2 993 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  A  e.  X )
4 xmettri2 13155 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( B  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( B D A ) +e ( B D B ) ) )
51, 2, 3, 2, 4syl13anc 1235 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  (
( B D A ) +e ( B D B ) ) )
6 xmet0 13157 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X
)  ->  ( B D B )  =  0 )
763adant2 1011 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D B )  =  0 )
87oveq2d 5869 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( ( B D A ) +e 0 ) )
9 xmetcl 13146 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( B D A )  e.  RR* )
10 xaddid1 9819 . . . . . 6  |-  ( ( B D A )  e.  RR*  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
119, 10syl 14 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
12113com23 1204 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e 0 )  =  ( B D A ) )
138, 12eqtrd 2203 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( B D A ) +e ( B D B ) )  =  ( B D A ) )
145, 13breqtrd 4015 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  <_  ( B D A ) )
15 xmettri2 13155 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  A  e.  X ) )  -> 
( B D A )  <_  ( ( A D B ) +e ( A D A ) ) )
161, 3, 2, 3, 15syl13anc 1235 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  (
( A D B ) +e ( A D A ) ) )
17 xmet0 13157 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X
)  ->  ( A D A )  =  0 )
18173adant3 1012 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D A )  =  0 )
1918oveq2d 5869 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( ( A D B ) +e 0 ) )
20 xmetcl 13146 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR* )
21 xaddid1 9819 . . . . 5  |-  ( ( A D B )  e.  RR*  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2220, 21syl 14 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e 0 )  =  ( A D B ) )
2319, 22eqtrd 2203 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B ) +e ( A D A ) )  =  ( A D B ) )
2416, 23breqtrd 4015 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  <_  ( A D B ) )
2593com23 1204 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( B D A )  e.  RR* )
26 xrletri3 9761 . . 3  |-  ( ( ( A D B )  e.  RR*  /\  ( B D A )  e. 
RR* )  ->  (
( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2720, 25, 26syl2anc 409 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B )  =  ( B D A )  <->  ( ( A D B )  <_ 
( B D A )  /\  ( B D A )  <_ 
( A D B ) ) ) )
2814, 24, 27mpbir2and 939 1  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  =  ( B D A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   0cc0 7774   RR*cxr 7953    <_ cle 7955   +ecxad 9727   *Metcxmet 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-0id 7882  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-xadd 9730  df-xmet 12782
This theorem is referenced by:  xmettpos  13164  metsym  13165  xmettri  13166  xmettri3  13168  elbl3  13189  blss  13222  xmeter  13230  xmssym  13263  metcnp2  13307
  Copyright terms: Public domain W3C validator