| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vscaslid | GIF version | ||
| Description: Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| vscaslid | ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vsca 13113 | . 2 ⊢ ·𝑠 = Slot 6 | |
| 2 | 6nn 9264 | . 2 ⊢ 6 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13043 | 1 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 ℕcn 9098 6c6 9153 ndxcnx 13015 Slot cslot 13017 ·𝑠 cvsca 13100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fv 5322 df-ov 5997 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-ndx 13021 df-slot 13022 df-vsca 13113 |
| This theorem is referenced by: lmodvscad 13187 ipsvscad 13200 ressvscag 13203 prdsex 13288 prdsval 13292 islmod 14240 scafvalg 14256 scaffng 14258 rmodislmodlem 14299 rmodislmod 14300 lsssn0 14319 lss1d 14332 lssintclm 14333 ellspsn 14366 sraval 14386 sralemg 14387 srascag 14391 sravscag 14392 sraipg 14393 sraex 14395 zlmval 14576 zlmlemg 14577 zlmsca 14581 zlmvscag 14582 psrval 14615 fnpsr 14616 |
| Copyright terms: Public domain | W3C validator |