| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vscaslid | GIF version | ||
| Description: Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| vscaslid | ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vsca 12799 | . 2 ⊢ ·𝑠 = Slot 6 | |
| 2 | 6nn 9175 | . 2 ⊢ 6 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12730 | 1 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 ℕcn 9009 6c6 9064 ndxcnx 12702 Slot cslot 12704 ·𝑠 cvsca 12786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-ndx 12708 df-slot 12709 df-vsca 12799 |
| This theorem is referenced by: lmodvscad 12872 ipsvscad 12885 ressvscag 12888 prdsex 12973 prdsval 12977 islmod 13925 scafvalg 13941 scaffng 13943 rmodislmodlem 13984 rmodislmod 13985 lsssn0 14004 lss1d 14017 lssintclm 14018 ellspsn 14051 sraval 14071 sralemg 14072 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 zlmval 14261 zlmlemg 14262 zlmsca 14266 zlmvscag 14267 psrval 14300 fnpsr 14301 |
| Copyright terms: Public domain | W3C validator |