| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vscaslid | GIF version | ||
| Description: Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| vscaslid | ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vsca 13135 | . 2 ⊢ ·𝑠 = Slot 6 | |
| 2 | 6nn 9284 | . 2 ⊢ 6 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13065 | 1 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 ℕcn 9118 6c6 9173 ndxcnx 13037 Slot cslot 13039 ·𝑠 cvsca 13122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-ndx 13043 df-slot 13044 df-vsca 13135 |
| This theorem is referenced by: lmodvscad 13209 ipsvscad 13222 ressvscag 13225 prdsex 13310 prdsval 13314 islmod 14263 scafvalg 14279 scaffng 14281 rmodislmodlem 14322 rmodislmod 14323 lsssn0 14342 lss1d 14355 lssintclm 14356 ellspsn 14389 sraval 14409 sralemg 14410 srascag 14414 sravscag 14415 sraipg 14416 sraex 14418 zlmval 14599 zlmlemg 14600 zlmsca 14604 zlmvscag 14605 psrval 14638 fnpsr 14639 |
| Copyright terms: Public domain | W3C validator |