ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vscaslid GIF version

Theorem vscaslid 12621
Description: Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.)
Assertion
Ref Expression
vscaslid ( ·𝑠 = Slot ( ·𝑠 β€˜ndx) ∧ ( ·𝑠 β€˜ndx) ∈ β„•)

Proof of Theorem vscaslid
StepHypRef Expression
1 df-vsca 12553 . 2 ·𝑠 = Slot 6
2 6nn 9084 . 2 6 ∈ β„•
31, 2ndxslid 12487 1 ( ·𝑠 = Slot ( ·𝑠 β€˜ndx) ∧ ( ·𝑠 β€˜ndx) ∈ β„•)
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   = wceq 1353   ∈ wcel 2148  β€˜cfv 5217  β„•cn 8919  6c6 8974  ndxcnx 12459  Slot cslot 12461   ·𝑠 cvsca 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-ndx 12465  df-slot 12466  df-vsca 12553
This theorem is referenced by:  lmodvscad  12626  ipsvscad  12639  prdsex  12718  islmod  13381  scafvalg  13397  scaffng  13399  rmodislmodlem  13440  rmodislmod  13441
  Copyright terms: Public domain W3C validator