![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vscaslid | GIF version |
Description: Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
vscaslid | ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vsca 12712 | . 2 ⊢ ·𝑠 = Slot 6 | |
2 | 6nn 9147 | . 2 ⊢ 6 ∈ ℕ | |
3 | 1, 2 | ndxslid 12643 | 1 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 ℕcn 8982 6c6 9037 ndxcnx 12615 Slot cslot 12617 ·𝑠 cvsca 12699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-ndx 12621 df-slot 12622 df-vsca 12712 |
This theorem is referenced by: lmodvscad 12785 ipsvscad 12798 ressvscag 12801 prdsex 12880 islmod 13787 scafvalg 13803 scaffng 13805 rmodislmodlem 13846 rmodislmod 13847 lsssn0 13866 lss1d 13879 lssintclm 13880 ellspsn 13913 sraval 13933 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 zlmval 14115 zlmlemg 14116 zlmsca 14120 zlmvscag 14121 psrval 14152 fnpsr 14153 |
Copyright terms: Public domain | W3C validator |