| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vscaslid | GIF version | ||
| Description: Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| vscaslid | ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vsca 12976 | . 2 ⊢ ·𝑠 = Slot 6 | |
| 2 | 6nn 9215 | . 2 ⊢ 6 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12907 | 1 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 ℕcn 9049 6c6 9104 ndxcnx 12879 Slot cslot 12881 ·𝑠 cvsca 12963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-ndx 12885 df-slot 12886 df-vsca 12976 |
| This theorem is referenced by: lmodvscad 13050 ipsvscad 13063 ressvscag 13066 prdsex 13151 prdsval 13155 islmod 14103 scafvalg 14119 scaffng 14121 rmodislmodlem 14162 rmodislmod 14163 lsssn0 14182 lss1d 14195 lssintclm 14196 ellspsn 14229 sraval 14249 sralemg 14250 srascag 14254 sravscag 14255 sraipg 14256 sraex 14258 zlmval 14439 zlmlemg 14440 zlmsca 14444 zlmvscag 14445 psrval 14478 fnpsr 14479 |
| Copyright terms: Public domain | W3C validator |