ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpsg GIF version

Theorem eltpsg 14708
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
eltpsi.k 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}
Assertion
Ref Expression
eltpsg (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)

Proof of Theorem eltpsg
StepHypRef Expression
1 toponmax 14693 . . . . 5 (𝐽 ∈ (TopOn‘𝐴) → 𝐴𝐽)
2 eltpsi.k . . . . . 6 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}
3 df-tset 13124 . . . . . 6 TopSet = Slot 9
4 1lt9 9311 . . . . . 6 1 < 9
5 9nn 9275 . . . . . 6 9 ∈ ℕ
62, 3, 4, 52stropg 13149 . . . . 5 ((𝐴𝐽𝐽 ∈ (TopOn‘𝐴)) → 𝐽 = (TopSet‘𝐾))
71, 6mpancom 422 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopSet‘𝐾))
82, 3, 4, 52strbasg 13148 . . . . . 6 ((𝐴𝐽𝐽 ∈ (TopOn‘𝐴)) → 𝐴 = (Base‘𝐾))
91, 8mpancom 422 . . . . 5 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = (Base‘𝐾))
109fveq2d 5630 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → (TopOn‘𝐴) = (TopOn‘(Base‘𝐾)))
117, 10eleq12d 2300 . . 3 (𝐽 ∈ (TopOn‘𝐴) → (𝐽 ∈ (TopOn‘𝐴) ↔ (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾))))
1211ibi 176 . 2 (𝐽 ∈ (TopOn‘𝐴) → (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
13 eqid 2229 . . 3 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2229 . . 3 (TopSet‘𝐾) = (TopSet‘𝐾)
1513, 14tsettps 14706 . 2 ((TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)) → 𝐾 ∈ TopSp)
1612, 15syl 14 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {cpr 3667  cop 3669  cfv 5317  9c9 9164  ndxcnx 13024  Basecbs 13027  TopSetcts 13111  TopOnctopon 14678  TopSpctps 14698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-ndx 13030  df-slot 13031  df-base 13033  df-tset 13124  df-rest 13269  df-topn 13270  df-top 14666  df-topon 14679  df-topsp 14699
This theorem is referenced by:  eltpsi  14709  stoig  14841
  Copyright terms: Public domain W3C validator