Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltpsg | GIF version |
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
eltpsi.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} |
Ref | Expression |
---|---|
eltpsg | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmax 12663 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 ∈ 𝐽) | |
2 | eltpsi.k | . . . . . 6 ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} | |
3 | df-tset 12476 | . . . . . 6 ⊢ TopSet = Slot 9 | |
4 | 1lt9 9061 | . . . . . 6 ⊢ 1 < 9 | |
5 | 9nn 9025 | . . . . . 6 ⊢ 9 ∈ ℕ | |
6 | 2, 3, 4, 5 | 2stropg 12497 | . . . . 5 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐽 ∈ (TopOn‘𝐴)) → 𝐽 = (TopSet‘𝐾)) |
7 | 1, 6 | mpancom 419 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopSet‘𝐾)) |
8 | 2, 3, 4, 5 | 2strbasg 12496 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐽 ∈ (TopOn‘𝐴)) → 𝐴 = (Base‘𝐾)) |
9 | 1, 8 | mpancom 419 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = (Base‘𝐾)) |
10 | 9 | fveq2d 5490 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopOn‘𝐴) = (TopOn‘(Base‘𝐾))) |
11 | 7, 10 | eleq12d 2237 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (𝐽 ∈ (TopOn‘𝐴) ↔ (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)))) |
12 | 11 | ibi 175 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
13 | eqid 2165 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | eqid 2165 | . . 3 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
15 | 13, 14 | tsettps 12676 | . 2 ⊢ ((TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)) → 𝐾 ∈ TopSp) |
16 | 12, 15 | syl 14 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 {cpr 3577 〈cop 3579 ‘cfv 5188 9c9 8915 ndxcnx 12391 Basecbs 12394 TopSetcts 12463 TopOnctopon 12648 TopSpctps 12668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-ndx 12397 df-slot 12398 df-base 12400 df-tset 12476 df-rest 12558 df-topn 12559 df-top 12636 df-topon 12649 df-topsp 12669 |
This theorem is referenced by: eltpsi 12679 stoig 12813 |
Copyright terms: Public domain | W3C validator |