| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltpsg | GIF version | ||
| Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| eltpsi.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} |
| Ref | Expression |
|---|---|
| eltpsg | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax 14415 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 ∈ 𝐽) | |
| 2 | eltpsi.k | . . . . . 6 ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} | |
| 3 | df-tset 12847 | . . . . . 6 ⊢ TopSet = Slot 9 | |
| 4 | 1lt9 9223 | . . . . . 6 ⊢ 1 < 9 | |
| 5 | 9nn 9187 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 6 | 2, 3, 4, 5 | 2stropg 12871 | . . . . 5 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐽 ∈ (TopOn‘𝐴)) → 𝐽 = (TopSet‘𝐾)) |
| 7 | 1, 6 | mpancom 422 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopSet‘𝐾)) |
| 8 | 2, 3, 4, 5 | 2strbasg 12870 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐽 ∈ (TopOn‘𝐴)) → 𝐴 = (Base‘𝐾)) |
| 9 | 1, 8 | mpancom 422 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = (Base‘𝐾)) |
| 10 | 9 | fveq2d 5574 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopOn‘𝐴) = (TopOn‘(Base‘𝐾))) |
| 11 | 7, 10 | eleq12d 2275 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (𝐽 ∈ (TopOn‘𝐴) ↔ (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)))) |
| 12 | 11 | ibi 176 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
| 13 | eqid 2204 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | eqid 2204 | . . 3 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
| 15 | 13, 14 | tsettps 14428 | . 2 ⊢ ((TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)) → 𝐾 ∈ TopSp) |
| 16 | 12, 15 | syl 14 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 {cpr 3633 〈cop 3635 ‘cfv 5268 9c9 9076 ndxcnx 12748 Basecbs 12751 TopSetcts 12834 TopOnctopon 14400 TopSpctps 14420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-ndx 12754 df-slot 12755 df-base 12757 df-tset 12847 df-rest 12991 df-topn 12992 df-top 14388 df-topon 14401 df-topsp 14421 |
| This theorem is referenced by: eltpsi 14431 stoig 14563 |
| Copyright terms: Public domain | W3C validator |