Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltpsg | GIF version |
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
eltpsi.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} |
Ref | Expression |
---|---|
eltpsg | ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmax 12817 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 ∈ 𝐽) | |
2 | eltpsi.k | . . . . . 6 ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} | |
3 | df-tset 12499 | . . . . . 6 ⊢ TopSet = Slot 9 | |
4 | 1lt9 9082 | . . . . . 6 ⊢ 1 < 9 | |
5 | 9nn 9046 | . . . . . 6 ⊢ 9 ∈ ℕ | |
6 | 2, 3, 4, 5 | 2stropg 12520 | . . . . 5 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐽 ∈ (TopOn‘𝐴)) → 𝐽 = (TopSet‘𝐾)) |
7 | 1, 6 | mpancom 420 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopSet‘𝐾)) |
8 | 2, 3, 4, 5 | 2strbasg 12519 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐽 ∈ (TopOn‘𝐴)) → 𝐴 = (Base‘𝐾)) |
9 | 1, 8 | mpancom 420 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = (Base‘𝐾)) |
10 | 9 | fveq2d 5500 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopOn‘𝐴) = (TopOn‘(Base‘𝐾))) |
11 | 7, 10 | eleq12d 2241 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (𝐽 ∈ (TopOn‘𝐴) ↔ (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)))) |
12 | 11 | ibi 175 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐴) → (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
13 | eqid 2170 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | eqid 2170 | . . 3 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
15 | 13, 14 | tsettps 12830 | . 2 ⊢ ((TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)) → 𝐾 ∈ TopSp) |
16 | 12, 15 | syl 14 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 {cpr 3584 〈cop 3586 ‘cfv 5198 9c9 8936 ndxcnx 12413 Basecbs 12416 TopSetcts 12486 TopOnctopon 12802 TopSpctps 12822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-ndx 12419 df-slot 12420 df-base 12422 df-tset 12499 df-rest 12581 df-topn 12582 df-top 12790 df-topon 12803 df-topsp 12823 |
This theorem is referenced by: eltpsi 12833 stoig 12967 |
Copyright terms: Public domain | W3C validator |