ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpsg GIF version

Theorem eltpsg 14430
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
eltpsi.k 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}
Assertion
Ref Expression
eltpsg (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)

Proof of Theorem eltpsg
StepHypRef Expression
1 toponmax 14415 . . . . 5 (𝐽 ∈ (TopOn‘𝐴) → 𝐴𝐽)
2 eltpsi.k . . . . . 6 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), 𝐽⟩}
3 df-tset 12847 . . . . . 6 TopSet = Slot 9
4 1lt9 9223 . . . . . 6 1 < 9
5 9nn 9187 . . . . . 6 9 ∈ ℕ
62, 3, 4, 52stropg 12871 . . . . 5 ((𝐴𝐽𝐽 ∈ (TopOn‘𝐴)) → 𝐽 = (TopSet‘𝐾))
71, 6mpancom 422 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopSet‘𝐾))
82, 3, 4, 52strbasg 12870 . . . . . 6 ((𝐴𝐽𝐽 ∈ (TopOn‘𝐴)) → 𝐴 = (Base‘𝐾))
91, 8mpancom 422 . . . . 5 (𝐽 ∈ (TopOn‘𝐴) → 𝐴 = (Base‘𝐾))
109fveq2d 5574 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → (TopOn‘𝐴) = (TopOn‘(Base‘𝐾)))
117, 10eleq12d 2275 . . 3 (𝐽 ∈ (TopOn‘𝐴) → (𝐽 ∈ (TopOn‘𝐴) ↔ (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾))))
1211ibi 176 . 2 (𝐽 ∈ (TopOn‘𝐴) → (TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
13 eqid 2204 . . 3 (Base‘𝐾) = (Base‘𝐾)
14 eqid 2204 . . 3 (TopSet‘𝐾) = (TopSet‘𝐾)
1513, 14tsettps 14428 . 2 ((TopSet‘𝐾) ∈ (TopOn‘(Base‘𝐾)) → 𝐾 ∈ TopSp)
1612, 15syl 14 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  {cpr 3633  cop 3635  cfv 5268  9c9 9076  ndxcnx 12748  Basecbs 12751  TopSetcts 12834  TopOnctopon 14400  TopSpctps 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084  df-ndx 12754  df-slot 12755  df-base 12757  df-tset 12847  df-rest 12991  df-topn 12992  df-top 14388  df-topon 14401  df-topsp 14421
This theorem is referenced by:  eltpsi  14431  stoig  14563
  Copyright terms: Public domain W3C validator