Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqrt2cxp2logb9e3 | GIF version |
Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12096 resp. 2logb9irr 13529), satisfying the statement in 2irrexpq 13534. (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 9594 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
2 | rpcxpsqrt 13482 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐(1 / 2)) = (√‘2)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
4 | 3 | eqcomi 2169 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
5 | 4 | oveq1i 5852 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
6 | halfre 9070 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
7 | 2z 9219 | . . . . . 6 ⊢ 2 ∈ ℤ | |
8 | uzid 9480 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
10 | 9nn 9025 | . . . . . 6 ⊢ 9 ∈ ℕ | |
11 | nnrp 9599 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
13 | relogbzcl 13510 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
14 | 9, 12, 13 | mp2an 423 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
15 | cxpcom 13497 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
16 | 1, 6, 14, 15 | mp3an 1327 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
17 | rpcxpcl 13464 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ (2 logb 9) ∈ ℝ) → (2↑𝑐(2 logb 9)) ∈ ℝ+) | |
18 | 1, 14, 17 | mp2an 423 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℝ+ |
19 | rpcxpsqrt 13482 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℝ+ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
21 | 5, 16, 20 | 3eqtri 2190 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
22 | 1re 7898 | . . . . 5 ⊢ 1 ∈ ℝ | |
23 | 2re 8927 | . . . . 5 ⊢ 2 ∈ ℝ | |
24 | 1lt2 9026 | . . . . 5 ⊢ 1 < 2 | |
25 | 22, 23, 24 | gtapii 8532 | . . . 4 ⊢ 2 # 1 |
26 | rpcxplogb 13522 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ 2 # 1 ∧ 9 ∈ ℝ+) → (2↑𝑐(2 logb 9)) = 9) | |
27 | 1, 25, 12, 26 | mp3an 1327 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
28 | 27 | fveq2i 5489 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
29 | sqrt9 10990 | . 2 ⊢ (√‘9) = 3 | |
30 | 21, 28, 29 | 3eqtri 2190 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 1c1 7754 # cap 8479 / cdiv 8568 ℕcn 8857 2c2 8908 3c3 8909 9c9 8915 ℤcz 9191 ℤ≥cuz 9466 ℝ+crp 9589 √csqrt 10938 ↑𝑐ccxp 13418 logb clogb 13501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-pre-suploc 7874 ax-addf 7875 ax-mulf 7876 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-map 6616 df-pm 6617 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-ioo 9828 df-ico 9830 df-icc 9831 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-bc 10661 df-ihash 10689 df-shft 10757 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-e 11590 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-cncf 13198 df-limced 13265 df-dvap 13266 df-relog 13419 df-rpcxp 13420 df-logb 13502 |
This theorem is referenced by: 2irrexpq 13534 2irrexpqap 13536 |
Copyright terms: Public domain | W3C validator |