| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqrt2cxp2logb9e3 | GIF version | ||
| Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12359 resp. 2logb9irr 15293), satisfying the statement in 2irrexpq 15298. (Contributed by AV, 29-Dec-2022.) |
| Ref | Expression |
|---|---|
| sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 9752 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 2 | rpcxpsqrt 15244 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐(1 / 2)) = (√‘2)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
| 4 | 3 | eqcomi 2200 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
| 5 | 4 | oveq1i 5935 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
| 6 | halfre 9223 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 7 | 2z 9373 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 8 | uzid 9634 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
| 10 | 9nn 9178 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 11 | nnrp 9757 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
| 13 | relogbzcl 15274 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
| 14 | 9, 12, 13 | mp2an 426 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
| 15 | cxpcom 15260 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
| 16 | 1, 6, 14, 15 | mp3an 1348 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
| 17 | rpcxpcl 15225 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ (2 logb 9) ∈ ℝ) → (2↑𝑐(2 logb 9)) ∈ ℝ+) | |
| 18 | 1, 14, 17 | mp2an 426 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℝ+ |
| 19 | rpcxpsqrt 15244 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℝ+ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
| 21 | 5, 16, 20 | 3eqtri 2221 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
| 22 | 1re 8044 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 23 | 2re 9079 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 24 | 1lt2 9179 | . . . . 5 ⊢ 1 < 2 | |
| 25 | 22, 23, 24 | gtapii 8680 | . . . 4 ⊢ 2 # 1 |
| 26 | rpcxplogb 15286 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ 2 # 1 ∧ 9 ∈ ℝ+) → (2↑𝑐(2 logb 9)) = 9) | |
| 27 | 1, 25, 12, 26 | mp3an 1348 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
| 28 | 27 | fveq2i 5564 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
| 29 | sqrt9 11232 | . 2 ⊢ (√‘9) = 3 | |
| 30 | 21, 28, 29 | 3eqtri 2221 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7897 1c1 7899 # cap 8627 / cdiv 8718 ℕcn 9009 2c2 9060 3c3 9061 9c9 9067 ℤcz 9345 ℤ≥cuz 9620 ℝ+crp 9747 √csqrt 11180 ↑𝑐ccxp 15179 logb clogb 15265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 ax-pre-suploc 8019 ax-addf 8020 ax-mulf 8021 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-xneg 9866 df-xadd 9867 df-ioo 9986 df-ico 9988 df-icc 9989 df-fz 10103 df-fzo 10237 df-seqfrec 10559 df-exp 10650 df-fac 10837 df-bc 10859 df-ihash 10887 df-shft 10999 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-clim 11463 df-sumdc 11538 df-ef 11832 df-e 11833 df-rest 12945 df-topgen 12964 df-psmet 14177 df-xmet 14178 df-met 14179 df-bl 14180 df-mopn 14181 df-top 14320 df-topon 14333 df-bases 14365 df-ntr 14418 df-cn 14510 df-cnp 14511 df-tx 14575 df-cncf 14893 df-limced 14978 df-dvap 14979 df-relog 15180 df-rpcxp 15181 df-logb 15266 |
| This theorem is referenced by: 2irrexpq 15298 2irrexpqap 15300 |
| Copyright terms: Public domain | W3C validator |