| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqrt2cxp2logb9e3 | GIF version | ||
| Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12530 resp. 2logb9irr 15487), satisfying the statement in 2irrexpq 15492. (Contributed by AV, 29-Dec-2022.) |
| Ref | Expression |
|---|---|
| sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 9787 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 2 | rpcxpsqrt 15438 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐(1 / 2)) = (√‘2)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
| 4 | 3 | eqcomi 2210 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
| 5 | 4 | oveq1i 5961 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
| 6 | halfre 9257 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 7 | 2z 9407 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 8 | uzid 9669 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
| 10 | 9nn 9212 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 11 | nnrp 9792 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
| 13 | relogbzcl 15468 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
| 14 | 9, 12, 13 | mp2an 426 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
| 15 | cxpcom 15454 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
| 16 | 1, 6, 14, 15 | mp3an 1350 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
| 17 | rpcxpcl 15419 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ (2 logb 9) ∈ ℝ) → (2↑𝑐(2 logb 9)) ∈ ℝ+) | |
| 18 | 1, 14, 17 | mp2an 426 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℝ+ |
| 19 | rpcxpsqrt 15438 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℝ+ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
| 21 | 5, 16, 20 | 3eqtri 2231 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
| 22 | 1re 8078 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 23 | 2re 9113 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 24 | 1lt2 9213 | . . . . 5 ⊢ 1 < 2 | |
| 25 | 22, 23, 24 | gtapii 8714 | . . . 4 ⊢ 2 # 1 |
| 26 | rpcxplogb 15480 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ 2 # 1 ∧ 9 ∈ ℝ+) → (2↑𝑐(2 logb 9)) = 9) | |
| 27 | 1, 25, 12, 26 | mp3an 1350 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
| 28 | 27 | fveq2i 5586 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
| 29 | sqrt9 11403 | . 2 ⊢ (√‘9) = 3 | |
| 30 | 21, 28, 29 | 3eqtri 2231 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 ℝcr 7931 1c1 7933 # cap 8661 / cdiv 8752 ℕcn 9043 2c2 9094 3c3 9095 9c9 9101 ℤcz 9379 ℤ≥cuz 9655 ℝ+crp 9782 √csqrt 11351 ↑𝑐ccxp 15373 logb clogb 15459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 ax-pre-suploc 8053 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-disj 4024 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-map 6744 df-pm 6745 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-ioo 10021 df-ico 10023 df-icc 10024 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-fac 10878 df-bc 10900 df-ihash 10928 df-shft 11170 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ef 12003 df-e 12004 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-ntr 14612 df-cn 14704 df-cnp 14705 df-tx 14769 df-cncf 15087 df-limced 15172 df-dvap 15173 df-relog 15374 df-rpcxp 15375 df-logb 15460 |
| This theorem is referenced by: 2irrexpq 15492 2irrexpqap 15494 |
| Copyright terms: Public domain | W3C validator |