ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2cxp2logb9e3 GIF version

Theorem sqrt2cxp2logb9e3 14664
Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12177 resp. 2logb9irr 14660), satisfying the statement in 2irrexpq 14665. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
sqrt2cxp2logb9e3 ((√‘2)↑𝑐(2 logb 9)) = 3

Proof of Theorem sqrt2cxp2logb9e3
StepHypRef Expression
1 2rp 9671 . . . . . 6 2 ∈ ℝ+
2 rpcxpsqrt 14613 . . . . . 6 (2 ∈ ℝ+ → (2↑𝑐(1 / 2)) = (√‘2))
31, 2ax-mp 5 . . . . 5 (2↑𝑐(1 / 2)) = (√‘2)
43eqcomi 2191 . . . 4 (√‘2) = (2↑𝑐(1 / 2))
54oveq1i 5898 . . 3 ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9))
6 halfre 9145 . . . 4 (1 / 2) ∈ ℝ
7 2z 9294 . . . . . 6 2 ∈ ℤ
8 uzid 9555 . . . . . 6 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
97, 8ax-mp 5 . . . . 5 2 ∈ (ℤ‘2)
10 9nn 9100 . . . . . 6 9 ∈ ℕ
11 nnrp 9676 . . . . . 6 (9 ∈ ℕ → 9 ∈ ℝ+)
1210, 11ax-mp 5 . . . . 5 9 ∈ ℝ+
13 relogbzcl 14641 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ)
149, 12, 13mp2an 426 . . . 4 (2 logb 9) ∈ ℝ
15 cxpcom 14628 . . . 4 ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)))
161, 6, 14, 15mp3an 1347 . . 3 ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))
17 rpcxpcl 14595 . . . . 5 ((2 ∈ ℝ+ ∧ (2 logb 9) ∈ ℝ) → (2↑𝑐(2 logb 9)) ∈ ℝ+)
181, 14, 17mp2an 426 . . . 4 (2↑𝑐(2 logb 9)) ∈ ℝ+
19 rpcxpsqrt 14613 . . . 4 ((2↑𝑐(2 logb 9)) ∈ ℝ+ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))))
2018, 19ax-mp 5 . . 3 ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))
215, 16, 203eqtri 2212 . 2 ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9)))
22 1re 7969 . . . . 5 1 ∈ ℝ
23 2re 9002 . . . . 5 2 ∈ ℝ
24 1lt2 9101 . . . . 5 1 < 2
2522, 23, 24gtapii 8604 . . . 4 2 # 1
26 rpcxplogb 14653 . . . 4 ((2 ∈ ℝ+ ∧ 2 # 1 ∧ 9 ∈ ℝ+) → (2↑𝑐(2 logb 9)) = 9)
271, 25, 12, 26mp3an 1347 . . 3 (2↑𝑐(2 logb 9)) = 9
2827fveq2i 5530 . 2 (√‘(2↑𝑐(2 logb 9))) = (√‘9)
29 sqrt9 11070 . 2 (√‘9) = 3
3021, 28, 293eqtri 2212 1 ((√‘2)↑𝑐(2 logb 9)) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1363  wcel 2158   class class class wbr 4015  cfv 5228  (class class class)co 5888  cr 7823  1c1 7825   # cap 8551   / cdiv 8642  cn 8932  2c2 8983  3c3 8984  9c9 8990  cz 9266  cuz 9541  +crp 9666  csqrt 11018  𝑐ccxp 14549   logb clogb 14632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944  ax-pre-suploc 7945  ax-addf 7946  ax-mulf 7947
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6096  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-map 6663  df-pm 6664  df-en 6754  df-dom 6755  df-fin 6756  df-sup 6996  df-inf 6997  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-9 8998  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-xneg 9785  df-xadd 9786  df-ioo 9905  df-ico 9907  df-icc 9908  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-fac 10719  df-bc 10741  df-ihash 10769  df-shft 10837  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375  df-ef 11669  df-e 11670  df-rest 12707  df-topgen 12726  df-psmet 13704  df-xmet 13705  df-met 13706  df-bl 13707  df-mopn 13708  df-top 13769  df-topon 13782  df-bases 13814  df-ntr 13867  df-cn 13959  df-cnp 13960  df-tx 14024  df-cncf 14329  df-limced 14396  df-dvap 14397  df-relog 14550  df-rpcxp 14551  df-logb 14633
This theorem is referenced by:  2irrexpq  14665  2irrexpqap  14667
  Copyright terms: Public domain W3C validator