![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrt2cxp2logb9e3 | GIF version |
Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12184 resp. 2logb9irr 14793), satisfying the statement in 2irrexpq 14798. (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 9678 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
2 | rpcxpsqrt 14746 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐(1 / 2)) = (√‘2)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
4 | 3 | eqcomi 2193 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
5 | 4 | oveq1i 5902 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
6 | halfre 9152 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
7 | 2z 9301 | . . . . . 6 ⊢ 2 ∈ ℤ | |
8 | uzid 9562 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
10 | 9nn 9107 | . . . . . 6 ⊢ 9 ∈ ℕ | |
11 | nnrp 9683 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
13 | relogbzcl 14774 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
14 | 9, 12, 13 | mp2an 426 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
15 | cxpcom 14761 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
16 | 1, 6, 14, 15 | mp3an 1348 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
17 | rpcxpcl 14728 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ (2 logb 9) ∈ ℝ) → (2↑𝑐(2 logb 9)) ∈ ℝ+) | |
18 | 1, 14, 17 | mp2an 426 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℝ+ |
19 | rpcxpsqrt 14746 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℝ+ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
21 | 5, 16, 20 | 3eqtri 2214 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
22 | 1re 7976 | . . . . 5 ⊢ 1 ∈ ℝ | |
23 | 2re 9009 | . . . . 5 ⊢ 2 ∈ ℝ | |
24 | 1lt2 9108 | . . . . 5 ⊢ 1 < 2 | |
25 | 22, 23, 24 | gtapii 8611 | . . . 4 ⊢ 2 # 1 |
26 | rpcxplogb 14786 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ 2 # 1 ∧ 9 ∈ ℝ+) → (2↑𝑐(2 logb 9)) = 9) | |
27 | 1, 25, 12, 26 | mp3an 1348 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
28 | 27 | fveq2i 5534 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
29 | sqrt9 11077 | . 2 ⊢ (√‘9) = 3 | |
30 | 21, 28, 29 | 3eqtri 2214 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5232 (class class class)co 5892 ℝcr 7830 1c1 7832 # cap 8558 / cdiv 8649 ℕcn 8939 2c2 8990 3c3 8991 9c9 8997 ℤcz 9273 ℤ≥cuz 9548 ℝ+crp 9673 √csqrt 11025 ↑𝑐ccxp 14682 logb clogb 14765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-mulrcl 7930 ax-addcom 7931 ax-mulcom 7932 ax-addass 7933 ax-mulass 7934 ax-distr 7935 ax-i2m1 7936 ax-0lt1 7937 ax-1rid 7938 ax-0id 7939 ax-rnegex 7940 ax-precex 7941 ax-cnre 7942 ax-pre-ltirr 7943 ax-pre-ltwlin 7944 ax-pre-lttrn 7945 ax-pre-apti 7946 ax-pre-ltadd 7947 ax-pre-mulgt0 7948 ax-pre-mulext 7949 ax-arch 7950 ax-caucvg 7951 ax-pre-suploc 7952 ax-addf 7953 ax-mulf 7954 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-isom 5241 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-of 6102 df-1st 6160 df-2nd 6161 df-recs 6325 df-irdg 6390 df-frec 6411 df-1o 6436 df-oadd 6440 df-er 6554 df-map 6669 df-pm 6670 df-en 6760 df-dom 6761 df-fin 6762 df-sup 7003 df-inf 7004 df-pnf 8014 df-mnf 8015 df-xr 8016 df-ltxr 8017 df-le 8018 df-sub 8150 df-neg 8151 df-reap 8552 df-ap 8559 df-div 8650 df-inn 8940 df-2 8998 df-3 8999 df-4 9000 df-5 9001 df-6 9002 df-7 9003 df-8 9004 df-9 9005 df-n0 9197 df-z 9274 df-uz 9549 df-q 9640 df-rp 9674 df-xneg 9792 df-xadd 9793 df-ioo 9912 df-ico 9914 df-icc 9915 df-fz 10029 df-fzo 10163 df-seqfrec 10466 df-exp 10540 df-fac 10726 df-bc 10748 df-ihash 10776 df-shft 10844 df-cj 10871 df-re 10872 df-im 10873 df-rsqrt 11027 df-abs 11028 df-clim 11307 df-sumdc 11382 df-ef 11676 df-e 11677 df-rest 12719 df-topgen 12738 df-psmet 13824 df-xmet 13825 df-met 13826 df-bl 13827 df-mopn 13828 df-top 13902 df-topon 13915 df-bases 13947 df-ntr 14000 df-cn 14092 df-cnp 14093 df-tx 14157 df-cncf 14462 df-limced 14529 df-dvap 14530 df-relog 14683 df-rpcxp 14684 df-logb 14766 |
This theorem is referenced by: 2irrexpq 14798 2irrexpqap 14800 |
Copyright terms: Public domain | W3C validator |