| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqrt2cxp2logb9e3 | GIF version | ||
| Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12652 resp. 2logb9irr 15610), satisfying the statement in 2irrexpq 15615. (Contributed by AV, 29-Dec-2022.) |
| Ref | Expression |
|---|---|
| sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 9822 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 2 | rpcxpsqrt 15561 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐(1 / 2)) = (√‘2)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
| 4 | 3 | eqcomi 2213 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
| 5 | 4 | oveq1i 5984 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
| 6 | halfre 9292 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 7 | 2z 9442 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 8 | uzid 9704 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
| 10 | 9nn 9247 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 11 | nnrp 9827 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
| 13 | relogbzcl 15591 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
| 14 | 9, 12, 13 | mp2an 426 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
| 15 | cxpcom 15577 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
| 16 | 1, 6, 14, 15 | mp3an 1352 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
| 17 | rpcxpcl 15542 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ (2 logb 9) ∈ ℝ) → (2↑𝑐(2 logb 9)) ∈ ℝ+) | |
| 18 | 1, 14, 17 | mp2an 426 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℝ+ |
| 19 | rpcxpsqrt 15561 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℝ+ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
| 20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
| 21 | 5, 16, 20 | 3eqtri 2234 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
| 22 | 1re 8113 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 23 | 2re 9148 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 24 | 1lt2 9248 | . . . . 5 ⊢ 1 < 2 | |
| 25 | 22, 23, 24 | gtapii 8749 | . . . 4 ⊢ 2 # 1 |
| 26 | rpcxplogb 15603 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ 2 # 1 ∧ 9 ∈ ℝ+) → (2↑𝑐(2 logb 9)) = 9) | |
| 27 | 1, 25, 12, 26 | mp3an 1352 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
| 28 | 27 | fveq2i 5606 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
| 29 | sqrt9 11525 | . 2 ⊢ (√‘9) = 3 | |
| 30 | 21, 28, 29 | 3eqtri 2234 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 1c1 7968 # cap 8696 / cdiv 8787 ℕcn 9078 2c2 9129 3c3 9130 9c9 9136 ℤcz 9414 ℤ≥cuz 9690 ℝ+crp 9817 √csqrt 11473 ↑𝑐ccxp 15496 logb clogb 15582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 ax-pre-suploc 8088 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-disj 4039 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-map 6767 df-pm 6768 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-xneg 9936 df-xadd 9937 df-ioo 10056 df-ico 10058 df-icc 10059 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-fac 10915 df-bc 10937 df-ihash 10965 df-shft 11292 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ef 12125 df-e 12126 df-rest 13240 df-topgen 13259 df-psmet 14472 df-xmet 14473 df-met 14474 df-bl 14475 df-mopn 14476 df-top 14637 df-topon 14650 df-bases 14682 df-ntr 14735 df-cn 14827 df-cnp 14828 df-tx 14892 df-cncf 15210 df-limced 15295 df-dvap 15296 df-relog 15497 df-rpcxp 15498 df-logb 15583 |
| This theorem is referenced by: 2irrexpq 15615 2irrexpqap 15617 |
| Copyright terms: Public domain | W3C validator |