![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrt2cxp2logb9e3 | GIF version |
Description: The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12177 resp. 2logb9irr 14660), satisfying the statement in 2irrexpq 14665. (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
sqrt2cxp2logb9e3 | ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 9671 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
2 | rpcxpsqrt 14613 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐(1 / 2)) = (√‘2)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (2↑𝑐(1 / 2)) = (√‘2) |
4 | 3 | eqcomi 2191 | . . . 4 ⊢ (√‘2) = (2↑𝑐(1 / 2)) |
5 | 4 | oveq1i 5898 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) |
6 | halfre 9145 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
7 | 2z 9294 | . . . . . 6 ⊢ 2 ∈ ℤ | |
8 | uzid 9555 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘2) |
10 | 9nn 9100 | . . . . . 6 ⊢ 9 ∈ ℕ | |
11 | nnrp 9676 | . . . . . 6 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 9 ∈ ℝ+ |
13 | relogbzcl 14641 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 9 ∈ ℝ+) → (2 logb 9) ∈ ℝ) | |
14 | 9, 12, 13 | mp2an 426 | . . . 4 ⊢ (2 logb 9) ∈ ℝ |
15 | cxpcom 14628 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ) → ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2))) | |
16 | 1, 6, 14, 15 | mp3an 1347 | . . 3 ⊢ ((2↑𝑐(1 / 2))↑𝑐(2 logb 9)) = ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) |
17 | rpcxpcl 14595 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ (2 logb 9) ∈ ℝ) → (2↑𝑐(2 logb 9)) ∈ ℝ+) | |
18 | 1, 14, 17 | mp2an 426 | . . . 4 ⊢ (2↑𝑐(2 logb 9)) ∈ ℝ+ |
19 | rpcxpsqrt 14613 | . . . 4 ⊢ ((2↑𝑐(2 logb 9)) ∈ ℝ+ → ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9)))) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((2↑𝑐(2 logb 9))↑𝑐(1 / 2)) = (√‘(2↑𝑐(2 logb 9))) |
21 | 5, 16, 20 | 3eqtri 2212 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) = (√‘(2↑𝑐(2 logb 9))) |
22 | 1re 7969 | . . . . 5 ⊢ 1 ∈ ℝ | |
23 | 2re 9002 | . . . . 5 ⊢ 2 ∈ ℝ | |
24 | 1lt2 9101 | . . . . 5 ⊢ 1 < 2 | |
25 | 22, 23, 24 | gtapii 8604 | . . . 4 ⊢ 2 # 1 |
26 | rpcxplogb 14653 | . . . 4 ⊢ ((2 ∈ ℝ+ ∧ 2 # 1 ∧ 9 ∈ ℝ+) → (2↑𝑐(2 logb 9)) = 9) | |
27 | 1, 25, 12, 26 | mp3an 1347 | . . 3 ⊢ (2↑𝑐(2 logb 9)) = 9 |
28 | 27 | fveq2i 5530 | . 2 ⊢ (√‘(2↑𝑐(2 logb 9))) = (√‘9) |
29 | sqrt9 11070 | . 2 ⊢ (√‘9) = 3 | |
30 | 21, 28, 29 | 3eqtri 2212 | 1 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 class class class wbr 4015 ‘cfv 5228 (class class class)co 5888 ℝcr 7823 1c1 7825 # cap 8551 / cdiv 8642 ℕcn 8932 2c2 8983 3c3 8984 9c9 8990 ℤcz 9266 ℤ≥cuz 9541 ℝ+crp 9666 √csqrt 11018 ↑𝑐ccxp 14549 logb clogb 14632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 ax-arch 7943 ax-caucvg 7944 ax-pre-suploc 7945 ax-addf 7946 ax-mulf 7947 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-disj 3993 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-of 6096 df-1st 6154 df-2nd 6155 df-recs 6319 df-irdg 6384 df-frec 6405 df-1o 6430 df-oadd 6434 df-er 6548 df-map 6663 df-pm 6664 df-en 6754 df-dom 6755 df-fin 6756 df-sup 6996 df-inf 6997 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-7 8996 df-8 8997 df-9 8998 df-n0 9190 df-z 9267 df-uz 9542 df-q 9633 df-rp 9667 df-xneg 9785 df-xadd 9786 df-ioo 9905 df-ico 9907 df-icc 9908 df-fz 10022 df-fzo 10156 df-seqfrec 10459 df-exp 10533 df-fac 10719 df-bc 10741 df-ihash 10769 df-shft 10837 df-cj 10864 df-re 10865 df-im 10866 df-rsqrt 11020 df-abs 11021 df-clim 11300 df-sumdc 11375 df-ef 11669 df-e 11670 df-rest 12707 df-topgen 12726 df-psmet 13704 df-xmet 13705 df-met 13706 df-bl 13707 df-mopn 13708 df-top 13769 df-topon 13782 df-bases 13814 df-ntr 13867 df-cn 13959 df-cnp 13960 df-tx 14024 df-cncf 14329 df-limced 14396 df-dvap 14397 df-relog 14550 df-rpcxp 14551 df-logb 14633 |
This theorem is referenced by: 2irrexpq 14665 2irrexpqap 14667 |
Copyright terms: Public domain | W3C validator |