ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topgrpstrd GIF version

Theorem topgrpstrd 12946
Description: A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
Hypotheses
Ref Expression
topgrpfn.w 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
topgrpfnd.b (𝜑𝐵𝑉)
topgrpfnd.p (𝜑+𝑊)
topgrpfnd.j (𝜑𝐽𝑋)
Assertion
Ref Expression
topgrpstrd (𝜑𝑊 Struct ⟨1, 9⟩)

Proof of Theorem topgrpstrd
StepHypRef Expression
1 topgrpfn.w . 2 𝑊 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
2 topgrpfnd.b . . 3 (𝜑𝐵𝑉)
3 topgrpfnd.p . . 3 (𝜑+𝑊)
4 topgrpfnd.j . . 3 (𝜑𝐽𝑋)
5 1nn 9029 . . . 4 1 ∈ ℕ
6 basendx 12806 . . . 4 (Base‘ndx) = 1
7 1lt2 9188 . . . 4 1 < 2
8 2nn 9180 . . . 4 2 ∈ ℕ
9 plusgndx 12860 . . . 4 (+g‘ndx) = 2
10 2lt9 9222 . . . 4 2 < 9
11 9nn 9187 . . . 4 9 ∈ ℕ
12 tsetndx 12936 . . . 4 (TopSet‘ndx) = 9
135, 6, 7, 8, 9, 10, 11, 12strle3g 12859 . . 3 ((𝐵𝑉+𝑊𝐽𝑋) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} Struct ⟨1, 9⟩)
142, 3, 4, 13syl3anc 1249 . 2 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} Struct ⟨1, 9⟩)
151, 14eqbrtrid 4078 1 (𝜑𝑊 Struct ⟨1, 9⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  {ctp 3634  cop 3635   class class class wbr 4043  cfv 5268  1c1 7908  2c2 9069  9c9 9076   Struct cstr 12747  ndxcnx 12748  Basecbs 12751  +gcplusg 12828  TopSetcts 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-9 9084  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-struct 12753  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-tset 12847
This theorem is referenced by:  topgrpbasd  12947  topgrpplusgd  12948  topgrptsetd  12949
  Copyright terms: Public domain W3C validator