| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topgrpstrd | GIF version | ||
| Description: A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
| Ref | Expression |
|---|---|
| topgrpfn.w | ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} |
| topgrpfnd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| topgrpfnd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| topgrpfnd.j | ⊢ (𝜑 → 𝐽 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| topgrpstrd | ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topgrpfn.w | . 2 ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} | |
| 2 | topgrpfnd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | topgrpfnd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
| 4 | topgrpfnd.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑋) | |
| 5 | 1nn 9077 | . . . 4 ⊢ 1 ∈ ℕ | |
| 6 | basendx 12972 | . . . 4 ⊢ (Base‘ndx) = 1 | |
| 7 | 1lt2 9236 | . . . 4 ⊢ 1 < 2 | |
| 8 | 2nn 9228 | . . . 4 ⊢ 2 ∈ ℕ | |
| 9 | plusgndx 13026 | . . . 4 ⊢ (+g‘ndx) = 2 | |
| 10 | 2lt9 9270 | . . . 4 ⊢ 2 < 9 | |
| 11 | 9nn 9235 | . . . 4 ⊢ 9 ∈ ℕ | |
| 12 | tsetndx 13103 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
| 13 | 5, 6, 7, 8, 9, 10, 11, 12 | strle3g 13025 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ 𝐽 ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈1, 9〉) |
| 14 | 2, 3, 4, 13 | syl3anc 1250 | . 2 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈1, 9〉) |
| 15 | 1, 14 | eqbrtrid 4089 | 1 ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {ctp 3640 〈cop 3641 class class class wbr 4054 ‘cfv 5285 1c1 7956 2c2 9117 9c9 9124 Struct cstr 12913 ndxcnx 12914 Basecbs 12917 +gcplusg 12994 TopSetcts 13000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-struct 12919 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-tset 13013 |
| This theorem is referenced by: topgrpbasd 13114 topgrpplusgd 13115 topgrptsetd 13116 |
| Copyright terms: Public domain | W3C validator |