| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | GIF version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 | ⊢ 1 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8044 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 1 | ltp1i 8951 | . 2 ⊢ 1 < (1 + 1) |
| 3 | df-2 9068 | . 2 ⊢ 2 = (1 + 1) | |
| 4 | 2, 3 | breqtrri 4061 | 1 ⊢ 1 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 (class class class)co 5925 1c1 7899 + caddc 7901 < clt 8080 2c2 9060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-2 9068 |
| This theorem is referenced by: 1lt3 9181 1lt4 9184 1lt6 9193 1lt7 9199 1lt8 9206 1lt9 9214 1ne2 9216 1ap2 9217 1le2 9218 halflt1 9227 nn0ge2m1nn 9328 nn0n0n1ge2b 9424 halfnz 9441 1lt10 9614 fztpval 10177 ige2m2fzo 10293 wrdlenge2n0 10989 sqrt2gt1lt2 11233 ege2le3 11855 cos12dec 11952 ene1 11969 eap1 11970 n2dvds1 12096 bits0o 12134 bitsfzolem 12138 bitsfzo 12139 bitsfi 12141 2prm 12322 3prm 12323 4nprm 12324 isprm5 12337 dec2dvds 12607 dec5nprm 12610 dec2nprm 12611 2expltfac 12635 basendxltplusgndx 12818 grpstrg 12830 grpbaseg 12831 grpplusgg 12832 rngstrg 12839 lmodstrd 12868 topgrpstrd 12900 reeff1o 15117 cosz12 15124 2logb9irrALT 15318 sqrt2cxp2logb9e3 15319 mersenne 15341 perfectlem1 15343 perfectlem2 15344 lgseisenlem1 15419 |
| Copyright terms: Public domain | W3C validator |