| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | GIF version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 | ⊢ 1 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8086 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 1 | ltp1i 8993 | . 2 ⊢ 1 < (1 + 1) |
| 3 | df-2 9110 | . 2 ⊢ 2 = (1 + 1) | |
| 4 | 2, 3 | breqtrri 4077 | 1 ⊢ 1 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4050 (class class class)co 5956 1c1 7941 + caddc 7943 < clt 8122 2c2 9102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-xp 4688 df-iota 5240 df-fv 5287 df-ov 5959 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-2 9110 |
| This theorem is referenced by: 1lt3 9223 1lt4 9226 1lt6 9235 1lt7 9241 1lt8 9248 1lt9 9256 1ne2 9258 1ap2 9259 1le2 9260 halflt1 9269 nn0ge2m1nn 9370 nn0n0n1ge2b 9467 halfnz 9484 1lt10 9657 fztpval 10220 ige2m2fzo 10344 wrdlenge2n0 11046 sqrt2gt1lt2 11430 ege2le3 12052 cos12dec 12149 ene1 12166 eap1 12167 n2dvds1 12293 bits0o 12331 bitsfzolem 12335 bitsfzo 12336 bitsfi 12338 2prm 12519 3prm 12520 4nprm 12521 isprm5 12534 dec2dvds 12804 dec5nprm 12807 dec2nprm 12808 2expltfac 12832 basendxltplusgndx 13015 grpstrg 13028 grpbaseg 13029 grpplusgg 13030 rngstrg 13037 lmodstrd 13066 topgrpstrd 13098 reeff1o 15315 cosz12 15322 2logb9irrALT 15516 sqrt2cxp2logb9e3 15517 mersenne 15539 perfectlem1 15541 perfectlem2 15542 lgseisenlem1 15617 |
| Copyright terms: Public domain | W3C validator |