![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt2 | GIF version |
Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
1lt2 | ⊢ 1 < 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7485 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 1 | ltp1i 8364 | . 2 ⊢ 1 < (1 + 1) |
3 | df-2 8479 | . 2 ⊢ 2 = (1 + 1) | |
4 | 2, 3 | breqtrri 3870 | 1 ⊢ 1 < 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3845 (class class class)co 5652 1c1 7349 + caddc 7351 < clt 7520 2c2 8471 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-i2m1 7448 ax-0lt1 7449 ax-0id 7451 ax-rnegex 7452 ax-pre-ltadd 7459 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-xp 4444 df-iota 4980 df-fv 5023 df-ov 5655 df-pnf 7522 df-mnf 7523 df-ltxr 7525 df-2 8479 |
This theorem is referenced by: 1lt3 8585 1lt4 8588 1lt6 8597 1lt7 8603 1lt8 8610 1lt9 8618 1ne2 8620 1ap2 8621 1le2 8622 halflt1 8631 nn0ge2m1nn 8731 nn0n0n1ge2b 8824 halfnz 8840 1lt10 9013 fztpval 9493 ige2m2fzo 9605 sqrt2gt1lt2 10478 ege2le3 10957 ene1 11068 eap1 11069 n2dvds1 11186 2prm 11383 3prm 11384 4nprm 11385 |
Copyright terms: Public domain | W3C validator |