| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | GIF version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 | ⊢ 1 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8133 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 1 | ltp1i 9040 | . 2 ⊢ 1 < (1 + 1) |
| 3 | df-2 9157 | . 2 ⊢ 2 = (1 + 1) | |
| 4 | 2, 3 | breqtrri 4109 | 1 ⊢ 1 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 (class class class)co 5994 1c1 7988 + caddc 7990 < clt 8169 2c2 9149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-iota 5274 df-fv 5322 df-ov 5997 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-2 9157 |
| This theorem is referenced by: 1lt3 9270 1lt4 9273 1lt6 9282 1lt7 9288 1lt8 9295 1lt9 9303 1ne2 9305 1ap2 9306 1le2 9307 halflt1 9316 nn0ge2m1nn 9417 nn0n0n1ge2b 9514 halfnz 9531 1lt10 9704 fztpval 10267 ige2m2fzo 10391 wrdlenge2n0 11093 s3fv1g 11310 sqrt2gt1lt2 11546 ege2le3 12168 cos12dec 12265 ene1 12282 eap1 12283 n2dvds1 12409 bits0o 12447 bitsfzolem 12451 bitsfzo 12452 bitsfi 12454 2prm 12635 3prm 12636 4nprm 12637 isprm5 12650 dec2dvds 12920 dec5nprm 12923 dec2nprm 12924 2expltfac 12948 basendxltplusgndx 13132 grpstrg 13145 grpbaseg 13146 grpplusgg 13147 rngstrg 13154 lmodstrd 13183 topgrpstrd 13215 reeff1o 15432 cosz12 15439 2logb9irrALT 15633 sqrt2cxp2logb9e3 15634 mersenne 15656 perfectlem1 15658 perfectlem2 15659 lgseisenlem1 15734 |
| Copyright terms: Public domain | W3C validator |