Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1lt2 | GIF version |
Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
1lt2 | ⊢ 1 < 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7898 | . . 3 ⊢ 1 ∈ ℝ | |
2 | 1 | ltp1i 8800 | . 2 ⊢ 1 < (1 + 1) |
3 | df-2 8916 | . 2 ⊢ 2 = (1 + 1) | |
4 | 2, 3 | breqtrri 4009 | 1 ⊢ 1 < 2 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3982 (class class class)co 5842 1c1 7754 + caddc 7756 < clt 7933 2c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-2 8916 |
This theorem is referenced by: 1lt3 9028 1lt4 9031 1lt6 9040 1lt7 9046 1lt8 9053 1lt9 9061 1ne2 9063 1ap2 9064 1le2 9065 halflt1 9074 nn0ge2m1nn 9174 nn0n0n1ge2b 9270 halfnz 9287 1lt10 9460 fztpval 10018 ige2m2fzo 10133 sqrt2gt1lt2 10991 ege2le3 11612 cos12dec 11708 ene1 11725 eap1 11726 n2dvds1 11849 2prm 12059 3prm 12060 4nprm 12061 isprm5 12074 grpstrg 12502 grpbaseg 12503 grpplusgg 12504 rngstrg 12510 lmodstrd 12528 topgrpstrd 12546 reeff1o 13334 cosz12 13341 2logb9irrALT 13532 sqrt2cxp2logb9e3 13533 |
Copyright terms: Public domain | W3C validator |