| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | GIF version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 | ⊢ 1 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8153 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 1 | ltp1i 9060 | . 2 ⊢ 1 < (1 + 1) |
| 3 | df-2 9177 | . 2 ⊢ 2 = (1 + 1) | |
| 4 | 2, 3 | breqtrri 4110 | 1 ⊢ 1 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4083 (class class class)co 6007 1c1 8008 + caddc 8010 < clt 8189 2c2 9169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-2 9177 |
| This theorem is referenced by: 1lt3 9290 1lt4 9293 1lt6 9302 1lt7 9308 1lt8 9315 1lt9 9323 1ne2 9325 1ap2 9326 1le2 9327 halflt1 9336 nn0ge2m1nn 9437 nn0n0n1ge2b 9534 halfnz 9551 1lt10 9724 fztpval 10287 ige2m2fzo 10412 wrdlenge2n0 11115 s3fv1g 11332 sqrt2gt1lt2 11568 ege2le3 12190 cos12dec 12287 ene1 12304 eap1 12305 n2dvds1 12431 bits0o 12469 bitsfzolem 12473 bitsfzo 12474 bitsfi 12476 2prm 12657 3prm 12658 4nprm 12659 isprm5 12672 dec2dvds 12942 dec5nprm 12945 dec2nprm 12946 2expltfac 12970 basendxltplusgndx 13154 grpstrg 13167 grpbaseg 13168 grpplusgg 13169 rngstrg 13176 lmodstrd 13205 topgrpstrd 13237 reeff1o 15455 cosz12 15462 2logb9irrALT 15656 sqrt2cxp2logb9e3 15657 mersenne 15679 perfectlem1 15681 perfectlem2 15682 lgseisenlem1 15757 |
| Copyright terms: Public domain | W3C validator |