| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2 | GIF version | ||
| Description: 1 is less than 2. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 1lt2 | ⊢ 1 < 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8028 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | 1 | ltp1i 8935 | . 2 ⊢ 1 < (1 + 1) |
| 3 | df-2 9052 | . 2 ⊢ 2 = (1 + 1) | |
| 4 | 2, 3 | breqtrri 4061 | 1 ⊢ 1 < 2 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4034 (class class class)co 5923 1c1 7883 + caddc 7885 < clt 8064 2c2 9044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-i2m1 7987 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5926 df-pnf 8066 df-mnf 8067 df-ltxr 8069 df-2 9052 |
| This theorem is referenced by: 1lt3 9165 1lt4 9168 1lt6 9177 1lt7 9183 1lt8 9190 1lt9 9198 1ne2 9200 1ap2 9201 1le2 9202 halflt1 9211 nn0ge2m1nn 9312 nn0n0n1ge2b 9408 halfnz 9425 1lt10 9598 fztpval 10161 ige2m2fzo 10277 wrdlenge2n0 10973 sqrt2gt1lt2 11217 ege2le3 11839 cos12dec 11936 ene1 11953 eap1 11954 n2dvds1 12080 bits0o 12118 bitsfzolem 12122 bitsfzo 12123 bitsfi 12125 2prm 12306 3prm 12307 4nprm 12308 isprm5 12321 dec2dvds 12591 dec5nprm 12594 dec2nprm 12595 2expltfac 12619 basendxltplusgndx 12802 grpstrg 12814 grpbaseg 12815 grpplusgg 12816 rngstrg 12823 lmodstrd 12852 topgrpstrd 12884 reeff1o 15035 cosz12 15042 2logb9irrALT 15236 sqrt2cxp2logb9e3 15237 mersenne 15259 perfectlem1 15261 perfectlem2 15262 lgseisenlem1 15337 |
| Copyright terms: Public domain | W3C validator |