ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxswrd GIF version

Theorem pfxswrd 11246
Description: A prefix of a subword is a subword. (Contributed by AV, 2-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
pfxswrd ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁𝑀)) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩)))

Proof of Theorem pfxswrd
StepHypRef Expression
1 simp1 1021 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 𝑊 ∈ Word 𝑉)
2 elfzelz 10229 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
323ad2ant3 1044 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℤ)
4 elfzel2 10227 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
543ad2ant3 1044 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
6 swrdclg 11190 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
71, 3, 5, 6syl3anc 1271 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
8 elfznn0 10318 . . . 4 (𝐿 ∈ (0...(𝑁𝑀)) → 𝐿 ∈ ℕ0)
9 pfxval 11214 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉𝐿 ∈ ℕ0) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩))
107, 8, 9syl2an 289 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩))
11 fznn0sub 10261 . . . . . . 7 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
12113ad2ant3 1044 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑁𝑀) ∈ ℕ0)
13 0elfz 10322 . . . . . 6 ((𝑁𝑀) ∈ ℕ0 → 0 ∈ (0...(𝑁𝑀)))
1412, 13syl 14 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 0 ∈ (0...(𝑁𝑀)))
1514anim1i 340 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → (0 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (0...(𝑁𝑀))))
16 swrdswrd 11245 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((0 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩)))
1716imp 124 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (0 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (0...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩))
1815, 17syldan 282 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨0, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩))
19 elfznn0 10318 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
20 nn0cn 9387 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
2120addridd 8303 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
2219, 21syl 14 . . . . . . 7 (𝑀 ∈ (0...𝑁) → (𝑀 + 0) = 𝑀)
23223ad2ant3 1044 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + 0) = 𝑀)
2423adantr 276 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → (𝑀 + 0) = 𝑀)
2524opeq1d 3863 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩ = ⟨𝑀, (𝑀 + 𝐿)⟩)
2625oveq2d 6023 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → (𝑊 substr ⟨(𝑀 + 0), (𝑀 + 𝐿)⟩) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩))
2710, 18, 263eqtrd 2266 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐿 ∈ (0...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩))
2827ex 115 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝐿 ∈ (0...(𝑁𝑀)) → ((𝑊 substr ⟨𝑀, 𝑁⟩) prefix 𝐿) = (𝑊 substr ⟨𝑀, (𝑀 + 𝐿)⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cop 3669  cfv 5318  (class class class)co 6007  0cc0 8007   + caddc 8010  cmin 8325  0cn0 9377  cz 9454  ...cfz 10212  chash 11005  Word cword 11079   substr csubstr 11185   prefix cpfx 11212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-ihash 11006  df-word 11080  df-substr 11186  df-pfx 11213
This theorem is referenced by:  pfxpfx  11248
  Copyright terms: Public domain W3C validator