ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcadd2 GIF version

Theorem pcadd2 12606
Description: The inequality of pcadd 12605 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
pcadd2.1 (𝜑𝑃 ∈ ℙ)
pcadd2.2 (𝜑𝐴 ∈ ℚ)
pcadd2.3 (𝜑𝐵 ∈ ℚ)
pcadd2.4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
Assertion
Ref Expression
pcadd2 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcadd2
StepHypRef Expression
1 pcadd2.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcadd2.2 . . 3 (𝜑𝐴 ∈ ℚ)
3 pcxcl 12576 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
41, 2, 3syl2anc 411 . 2 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℝ*)
5 pcadd2.3 . . . 4 (𝜑𝐵 ∈ ℚ)
6 qaddcl 9755 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
72, 5, 6syl2anc 411 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℚ)
8 pcxcl 12576 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
91, 7, 8syl2anc 411 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
10 pcxcl 12576 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt 𝐵) ∈ ℝ*)
111, 5, 10syl2anc 411 . . . 4 (𝜑 → (𝑃 pCnt 𝐵) ∈ ℝ*)
12 pcadd2.4 . . . 4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
134, 11, 12xrltled 9920 . . 3 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
141, 2, 5, 13pcadd 12605 . 2 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
15 qnegcl 9756 . . . . 5 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
165, 15syl 14 . . . 4 (𝜑 → -𝐵 ∈ ℚ)
17 pcxqcl 12577 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → ((𝑃 pCnt 𝐴) ∈ ℤ ∨ (𝑃 pCnt 𝐴) = +∞))
18 zq 9746 . . . . . . . . . . . . 13 ((𝑃 pCnt 𝐴) ∈ ℤ → (𝑃 pCnt 𝐴) ∈ ℚ)
1918orim1i 761 . . . . . . . . . . . 12 (((𝑃 pCnt 𝐴) ∈ ℤ ∨ (𝑃 pCnt 𝐴) = +∞) → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
2017, 19syl 14 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
211, 2, 20syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
22 pcxqcl 12577 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → ((𝑃 pCnt 𝐵) ∈ ℤ ∨ (𝑃 pCnt 𝐵) = +∞))
23 zq 9746 . . . . . . . . . . . . 13 ((𝑃 pCnt 𝐵) ∈ ℤ → (𝑃 pCnt 𝐵) ∈ ℚ)
2423orim1i 761 . . . . . . . . . . . 12 (((𝑃 pCnt 𝐵) ∈ ℤ ∨ (𝑃 pCnt 𝐵) = +∞) → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
2522, 24syl 14 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
261, 5, 25syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
27 xqltnle 10408 . . . . . . . . . 10 ((((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞) ∧ ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞)) → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
2821, 26, 27syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
2912, 28mpbid 147 . . . . . . . 8 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
301adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → 𝑃 ∈ ℙ)
3116adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → -𝐵 ∈ ℚ)
327adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝐴 + 𝐵) ∈ ℚ)
33 pcneg 12590 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
341, 5, 33syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
3534breq1d 4053 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
3635biimpar 297 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
3730, 31, 32, 36pcadd 12605 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))))
3837ex 115 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵)))))
39 qcn 9754 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
405, 39syl 14 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
4140negcld 8369 . . . . . . . . . . . . 13 (𝜑 → -𝐵 ∈ ℂ)
42 qcn 9754 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
432, 42syl 14 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
4441, 43, 40add12d 8238 . . . . . . . . . . . 12 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = (𝐴 + (-𝐵 + 𝐵)))
4541, 40addcomd 8222 . . . . . . . . . . . . . 14 (𝜑 → (-𝐵 + 𝐵) = (𝐵 + -𝐵))
4640negidd 8372 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + -𝐵) = 0)
4745, 46eqtrd 2237 . . . . . . . . . . . . 13 (𝜑 → (-𝐵 + 𝐵) = 0)
4847oveq2d 5959 . . . . . . . . . . . 12 (𝜑 → (𝐴 + (-𝐵 + 𝐵)) = (𝐴 + 0))
4943addridd 8220 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 0) = 𝐴)
5044, 48, 493eqtrd 2241 . . . . . . . . . . 11 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = 𝐴)
5150oveq2d 5959 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) = (𝑃 pCnt 𝐴))
5234, 51breq12d 4056 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
5338, 52sylibd 149 . . . . . . . 8 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
5429, 53mtod 664 . . . . . . 7 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
55 pcxqcl 12577 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
56 zq 9746 . . . . . . . . . . 11 ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ)
5756orim1i 761 . . . . . . . . . 10 (((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
5855, 57syl 14 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
591, 7, 58syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
60 xqltnle 10408 . . . . . . . 8 ((((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞) ∧ ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞)) → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
6159, 26, 60syl2anc 411 . . . . . . 7 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
6254, 61mpbird 167 . . . . . 6 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵))
639, 11, 62xrltled 9920 . . . . 5 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵))
6463, 34breqtrrd 4071 . . . 4 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt -𝐵))
651, 7, 16, 64pcadd 12605 . . 3 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)))
6643, 40, 41addassd 8094 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = (𝐴 + (𝐵 + -𝐵)))
6746oveq2d 5959 . . . . 5 (𝜑 → (𝐴 + (𝐵 + -𝐵)) = (𝐴 + 0))
6866, 67, 493eqtrd 2241 . . . 4 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = 𝐴)
6968oveq2d 5959 . . 3 (𝜑 → (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)) = (𝑃 pCnt 𝐴))
7065, 69breqtrd 4069 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴))
714, 9, 14, 70xrletrid 9926 1 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wcel 2175   class class class wbr 4043  (class class class)co 5943  cc 7922  0cc0 7924   + caddc 7927  +∞cpnf 8103  *cxr 8105   < clt 8106  cle 8107  -cneg 8243  cz 9371  cq 9739  cprime 12371   pCnt cpc 12549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-gcd 12217  df-prm 12372  df-pc 12550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator