ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcadd2 GIF version

Theorem pcadd2 12510
Description: The inequality of pcadd 12509 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
pcadd2.1 (𝜑𝑃 ∈ ℙ)
pcadd2.2 (𝜑𝐴 ∈ ℚ)
pcadd2.3 (𝜑𝐵 ∈ ℚ)
pcadd2.4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
Assertion
Ref Expression
pcadd2 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcadd2
StepHypRef Expression
1 pcadd2.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcadd2.2 . . 3 (𝜑𝐴 ∈ ℚ)
3 pcxcl 12480 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
41, 2, 3syl2anc 411 . 2 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℝ*)
5 pcadd2.3 . . . 4 (𝜑𝐵 ∈ ℚ)
6 qaddcl 9709 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
72, 5, 6syl2anc 411 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℚ)
8 pcxcl 12480 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
91, 7, 8syl2anc 411 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
10 pcxcl 12480 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt 𝐵) ∈ ℝ*)
111, 5, 10syl2anc 411 . . . 4 (𝜑 → (𝑃 pCnt 𝐵) ∈ ℝ*)
12 pcadd2.4 . . . 4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
134, 11, 12xrltled 9874 . . 3 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
141, 2, 5, 13pcadd 12509 . 2 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
15 qnegcl 9710 . . . . 5 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
165, 15syl 14 . . . 4 (𝜑 → -𝐵 ∈ ℚ)
17 pcxqcl 12481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → ((𝑃 pCnt 𝐴) ∈ ℤ ∨ (𝑃 pCnt 𝐴) = +∞))
18 zq 9700 . . . . . . . . . . . . 13 ((𝑃 pCnt 𝐴) ∈ ℤ → (𝑃 pCnt 𝐴) ∈ ℚ)
1918orim1i 761 . . . . . . . . . . . 12 (((𝑃 pCnt 𝐴) ∈ ℤ ∨ (𝑃 pCnt 𝐴) = +∞) → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
2017, 19syl 14 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
211, 2, 20syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
22 pcxqcl 12481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → ((𝑃 pCnt 𝐵) ∈ ℤ ∨ (𝑃 pCnt 𝐵) = +∞))
23 zq 9700 . . . . . . . . . . . . 13 ((𝑃 pCnt 𝐵) ∈ ℤ → (𝑃 pCnt 𝐵) ∈ ℚ)
2423orim1i 761 . . . . . . . . . . . 12 (((𝑃 pCnt 𝐵) ∈ ℤ ∨ (𝑃 pCnt 𝐵) = +∞) → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
2522, 24syl 14 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
261, 5, 25syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
27 xqltnle 10357 . . . . . . . . . 10 ((((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞) ∧ ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞)) → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
2821, 26, 27syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
2912, 28mpbid 147 . . . . . . . 8 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
301adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → 𝑃 ∈ ℙ)
3116adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → -𝐵 ∈ ℚ)
327adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝐴 + 𝐵) ∈ ℚ)
33 pcneg 12494 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
341, 5, 33syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
3534breq1d 4043 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
3635biimpar 297 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
3730, 31, 32, 36pcadd 12509 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))))
3837ex 115 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵)))))
39 qcn 9708 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
405, 39syl 14 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
4140negcld 8324 . . . . . . . . . . . . 13 (𝜑 → -𝐵 ∈ ℂ)
42 qcn 9708 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
432, 42syl 14 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
4441, 43, 40add12d 8193 . . . . . . . . . . . 12 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = (𝐴 + (-𝐵 + 𝐵)))
4541, 40addcomd 8177 . . . . . . . . . . . . . 14 (𝜑 → (-𝐵 + 𝐵) = (𝐵 + -𝐵))
4640negidd 8327 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + -𝐵) = 0)
4745, 46eqtrd 2229 . . . . . . . . . . . . 13 (𝜑 → (-𝐵 + 𝐵) = 0)
4847oveq2d 5938 . . . . . . . . . . . 12 (𝜑 → (𝐴 + (-𝐵 + 𝐵)) = (𝐴 + 0))
4943addridd 8175 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 0) = 𝐴)
5044, 48, 493eqtrd 2233 . . . . . . . . . . 11 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = 𝐴)
5150oveq2d 5938 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) = (𝑃 pCnt 𝐴))
5234, 51breq12d 4046 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
5338, 52sylibd 149 . . . . . . . 8 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
5429, 53mtod 664 . . . . . . 7 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
55 pcxqcl 12481 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
56 zq 9700 . . . . . . . . . . 11 ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ)
5756orim1i 761 . . . . . . . . . 10 (((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
5855, 57syl 14 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
591, 7, 58syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
60 xqltnle 10357 . . . . . . . 8 ((((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞) ∧ ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞)) → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
6159, 26, 60syl2anc 411 . . . . . . 7 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
6254, 61mpbird 167 . . . . . 6 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵))
639, 11, 62xrltled 9874 . . . . 5 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵))
6463, 34breqtrrd 4061 . . . 4 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt -𝐵))
651, 7, 16, 64pcadd 12509 . . 3 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)))
6643, 40, 41addassd 8049 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = (𝐴 + (𝐵 + -𝐵)))
6746oveq2d 5938 . . . . 5 (𝜑 → (𝐴 + (𝐵 + -𝐵)) = (𝐴 + 0))
6866, 67, 493eqtrd 2233 . . . 4 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = 𝐴)
6968oveq2d 5938 . . 3 (𝜑 → (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)) = (𝑃 pCnt 𝐴))
7065, 69breqtrd 4059 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴))
714, 9, 14, 70xrletrid 9880 1 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cc 7877  0cc0 7879   + caddc 7882  +∞cpnf 8058  *cxr 8060   < clt 8061  cle 8062  -cneg 8198  cz 9326  cq 9693  cprime 12275   pCnt cpc 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-pc 12454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator