ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcadd2 GIF version

Theorem pcadd2 12859
Description: The inequality of pcadd 12858 becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
pcadd2.1 (𝜑𝑃 ∈ ℙ)
pcadd2.2 (𝜑𝐴 ∈ ℚ)
pcadd2.3 (𝜑𝐵 ∈ ℚ)
pcadd2.4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
Assertion
Ref Expression
pcadd2 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcadd2
StepHypRef Expression
1 pcadd2.1 . . 3 (𝜑𝑃 ∈ ℙ)
2 pcadd2.2 . . 3 (𝜑𝐴 ∈ ℚ)
3 pcxcl 12829 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt 𝐴) ∈ ℝ*)
41, 2, 3syl2anc 411 . 2 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℝ*)
5 pcadd2.3 . . . 4 (𝜑𝐵 ∈ ℚ)
6 qaddcl 9826 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
72, 5, 6syl2anc 411 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℚ)
8 pcxcl 12829 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
91, 7, 8syl2anc 411 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℝ*)
10 pcxcl 12829 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt 𝐵) ∈ ℝ*)
111, 5, 10syl2anc 411 . . . 4 (𝜑 → (𝑃 pCnt 𝐵) ∈ ℝ*)
12 pcadd2.4 . . . 4 (𝜑 → (𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵))
134, 11, 12xrltled 9991 . . 3 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
141, 2, 5, 13pcadd 12858 . 2 (𝜑 → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
15 qnegcl 9827 . . . . 5 (𝐵 ∈ ℚ → -𝐵 ∈ ℚ)
165, 15syl 14 . . . 4 (𝜑 → -𝐵 ∈ ℚ)
17 pcxqcl 12830 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → ((𝑃 pCnt 𝐴) ∈ ℤ ∨ (𝑃 pCnt 𝐴) = +∞))
18 zq 9817 . . . . . . . . . . . . 13 ((𝑃 pCnt 𝐴) ∈ ℤ → (𝑃 pCnt 𝐴) ∈ ℚ)
1918orim1i 765 . . . . . . . . . . . 12 (((𝑃 pCnt 𝐴) ∈ ℤ ∨ (𝑃 pCnt 𝐴) = +∞) → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
2017, 19syl 14 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
211, 2, 20syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞))
22 pcxqcl 12830 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → ((𝑃 pCnt 𝐵) ∈ ℤ ∨ (𝑃 pCnt 𝐵) = +∞))
23 zq 9817 . . . . . . . . . . . . 13 ((𝑃 pCnt 𝐵) ∈ ℤ → (𝑃 pCnt 𝐵) ∈ ℚ)
2423orim1i 765 . . . . . . . . . . . 12 (((𝑃 pCnt 𝐵) ∈ ℤ ∨ (𝑃 pCnt 𝐵) = +∞) → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
2522, 24syl 14 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
261, 5, 25syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞))
27 xqltnle 10482 . . . . . . . . . 10 ((((𝑃 pCnt 𝐴) ∈ ℚ ∨ (𝑃 pCnt 𝐴) = +∞) ∧ ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞)) → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
2821, 26, 27syl2anc 411 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐴) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
2912, 28mpbid 147 . . . . . . . 8 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴))
301adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → 𝑃 ∈ ℙ)
3116adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → -𝐵 ∈ ℚ)
327adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝐴 + 𝐵) ∈ ℚ)
33 pcneg 12843 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ) → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
341, 5, 33syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt -𝐵) = (𝑃 pCnt 𝐵))
3534breq1d 4092 . . . . . . . . . . . 12 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
3635biimpar 297 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
3730, 31, 32, 36pcadd 12858 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))))
3837ex 115 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵)))))
39 qcn 9825 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
405, 39syl 14 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
4140negcld 8440 . . . . . . . . . . . . 13 (𝜑 → -𝐵 ∈ ℂ)
42 qcn 9825 . . . . . . . . . . . . . 14 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
432, 42syl 14 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℂ)
4441, 43, 40add12d 8309 . . . . . . . . . . . 12 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = (𝐴 + (-𝐵 + 𝐵)))
4541, 40addcomd 8293 . . . . . . . . . . . . . 14 (𝜑 → (-𝐵 + 𝐵) = (𝐵 + -𝐵))
4640negidd 8443 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + -𝐵) = 0)
4745, 46eqtrd 2262 . . . . . . . . . . . . 13 (𝜑 → (-𝐵 + 𝐵) = 0)
4847oveq2d 6016 . . . . . . . . . . . 12 (𝜑 → (𝐴 + (-𝐵 + 𝐵)) = (𝐴 + 0))
4943addridd 8291 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 0) = 𝐴)
5044, 48, 493eqtrd 2266 . . . . . . . . . . 11 (𝜑 → (-𝐵 + (𝐴 + 𝐵)) = 𝐴)
5150oveq2d 6016 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) = (𝑃 pCnt 𝐴))
5234, 51breq12d 4095 . . . . . . . . 9 (𝜑 → ((𝑃 pCnt -𝐵) ≤ (𝑃 pCnt (-𝐵 + (𝐴 + 𝐵))) ↔ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
5338, 52sylibd 149 . . . . . . . 8 (𝜑 → ((𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)) → (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt 𝐴)))
5429, 53mtod 667 . . . . . . 7 (𝜑 → ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵)))
55 pcxqcl 12830 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
56 zq 9817 . . . . . . . . . . 11 ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ → (𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ)
5756orim1i 765 . . . . . . . . . 10 (((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℤ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
5855, 57syl 14 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴 + 𝐵) ∈ ℚ) → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
591, 7, 58syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞))
60 xqltnle 10482 . . . . . . . 8 ((((𝑃 pCnt (𝐴 + 𝐵)) ∈ ℚ ∨ (𝑃 pCnt (𝐴 + 𝐵)) = +∞) ∧ ((𝑃 pCnt 𝐵) ∈ ℚ ∨ (𝑃 pCnt 𝐵) = +∞)) → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
6159, 26, 60syl2anc 411 . . . . . . 7 (𝜑 → ((𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵) ↔ ¬ (𝑃 pCnt 𝐵) ≤ (𝑃 pCnt (𝐴 + 𝐵))))
6254, 61mpbird 167 . . . . . 6 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) < (𝑃 pCnt 𝐵))
639, 11, 62xrltled 9991 . . . . 5 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐵))
6463, 34breqtrrd 4110 . . . 4 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt -𝐵))
651, 7, 16, 64pcadd 12858 . . 3 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)))
6643, 40, 41addassd 8165 . . . . 5 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = (𝐴 + (𝐵 + -𝐵)))
6746oveq2d 6016 . . . . 5 (𝜑 → (𝐴 + (𝐵 + -𝐵)) = (𝐴 + 0))
6866, 67, 493eqtrd 2266 . . . 4 (𝜑 → ((𝐴 + 𝐵) + -𝐵) = 𝐴)
6968oveq2d 6016 . . 3 (𝜑 → (𝑃 pCnt ((𝐴 + 𝐵) + -𝐵)) = (𝑃 pCnt 𝐴))
7065, 69breqtrd 4108 . 2 (𝜑 → (𝑃 pCnt (𝐴 + 𝐵)) ≤ (𝑃 pCnt 𝐴))
714, 9, 14, 70xrletrid 9997 1 (𝜑 → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 6000  cc 7993  0cc0 7995   + caddc 7998  +∞cpnf 8174  *cxr 8176   < clt 8177  cle 8178  -cneg 8314  cz 9442  cq 9810  cprime 12624   pCnt cpc 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625  df-pc 12803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator