ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlidd GIF version

Theorem addlidd 8304
Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
muld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
addlidd (𝜑 → (0 + 𝐴) = 𝐴)

Proof of Theorem addlidd
StepHypRef Expression
1 muld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addlid 8293 . 2 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
31, 2syl 14 1 (𝜑 → (0 + 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  (class class class)co 6007  cc 8005  0cc0 8007   + caddc 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-1cn 8100  ax-icn 8102  ax-addcl 8103  ax-mulcl 8105  ax-addcom 8107  ax-i2m1 8112  ax-0id 8115
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225
This theorem is referenced by:  negeu  8345  ltadd2  8574  subge0  8630  sublt0d  8725  un0addcl  9410  lincmb01cmp  10207  modsumfzodifsn  10626  ccatlid  11149  swrdfv0  11194  swrdpfx  11247  pfxpfx  11248  cats1un  11261  swrdccatin2  11269  cats1fvnd  11305  rennim  11521  max0addsup  11738  fsumsplit  11926  sumsplitdc  11951  fisum0diag2  11966  isumsplit  12010  arisum2  12018  efaddlem  12193  eftlub  12209  ef4p  12213  moddvds  12318  gcdaddm  12513  gcdmultipled  12522  bezoutlemb  12529  pcmpt  12874  4sqlem11  12932  mulgnn0dir  13697  limcimolemlt  15346  dvcnp2cntop  15381  dvmptcmulcn  15403  dveflem  15408  dvef  15409  plymullem1  15430  sin0pilem1  15463  sin2kpi  15493  cos2kpi  15494  coshalfpim  15505  sinkpi  15529
  Copyright terms: Public domain W3C validator