| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidd | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addlidd | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addlid 8218 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 0cc0 7932 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-mulcl 8030 ax-addcom 8032 ax-i2m1 8037 ax-0id 8040 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: negeu 8270 ltadd2 8499 subge0 8555 sublt0d 8650 un0addcl 9335 lincmb01cmp 10132 modsumfzodifsn 10548 ccatlid 11070 swrdfv0 11115 swrdpfx 11166 pfxpfx 11167 rennim 11357 max0addsup 11574 fsumsplit 11762 sumsplitdc 11787 fisum0diag2 11802 isumsplit 11846 arisum2 11854 efaddlem 12029 eftlub 12045 ef4p 12049 moddvds 12154 gcdaddm 12349 gcdmultipled 12358 bezoutlemb 12365 pcmpt 12710 4sqlem11 12768 mulgnn0dir 13532 limcimolemlt 15180 dvcnp2cntop 15215 dvmptcmulcn 15237 dveflem 15242 dvef 15243 plymullem1 15264 sin0pilem1 15297 sin2kpi 15327 cos2kpi 15328 coshalfpim 15339 sinkpi 15363 |
| Copyright terms: Public domain | W3C validator |