| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidd | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addlidd | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addlid 8293 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-addcom 8107 ax-i2m1 8112 ax-0id 8115 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: negeu 8345 ltadd2 8574 subge0 8630 sublt0d 8725 un0addcl 9410 lincmb01cmp 10207 modsumfzodifsn 10626 ccatlid 11149 swrdfv0 11194 swrdpfx 11247 pfxpfx 11248 cats1un 11261 swrdccatin2 11269 cats1fvnd 11305 rennim 11521 max0addsup 11738 fsumsplit 11926 sumsplitdc 11951 fisum0diag2 11966 isumsplit 12010 arisum2 12018 efaddlem 12193 eftlub 12209 ef4p 12213 moddvds 12318 gcdaddm 12513 gcdmultipled 12522 bezoutlemb 12529 pcmpt 12874 4sqlem11 12932 mulgnn0dir 13697 limcimolemlt 15346 dvcnp2cntop 15381 dvmptcmulcn 15403 dveflem 15408 dvef 15409 plymullem1 15430 sin0pilem1 15463 sin2kpi 15493 cos2kpi 15494 coshalfpim 15505 sinkpi 15529 |
| Copyright terms: Public domain | W3C validator |