| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidd | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addlidd | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addlid 8184 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-addcom 7998 ax-i2m1 8003 ax-0id 8006 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: negeu 8236 ltadd2 8465 subge0 8521 sublt0d 8616 un0addcl 9301 lincmb01cmp 10097 modsumfzodifsn 10507 rennim 11186 max0addsup 11403 fsumsplit 11591 sumsplitdc 11616 fisum0diag2 11631 isumsplit 11675 arisum2 11683 efaddlem 11858 eftlub 11874 ef4p 11878 moddvds 11983 gcdaddm 12178 gcdmultipled 12187 bezoutlemb 12194 pcmpt 12539 4sqlem11 12597 mulgnn0dir 13360 limcimolemlt 14986 dvcnp2cntop 15021 dvmptcmulcn 15043 dveflem 15048 dvef 15049 plymullem1 15070 sin0pilem1 15103 sin2kpi 15133 cos2kpi 15134 coshalfpim 15145 sinkpi 15169 |
| Copyright terms: Public domain | W3C validator |