| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidd | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addlidd | ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addlid 8253 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 0cc0 7967 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 ax-ext 2191 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-addcom 8067 ax-i2m1 8072 ax-0id 8075 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: negeu 8305 ltadd2 8534 subge0 8590 sublt0d 8685 un0addcl 9370 lincmb01cmp 10167 modsumfzodifsn 10585 ccatlid 11107 swrdfv0 11152 swrdpfx 11205 pfxpfx 11206 cats1un 11219 swrdccatin2 11227 cats1fvnd 11263 rennim 11479 max0addsup 11696 fsumsplit 11884 sumsplitdc 11909 fisum0diag2 11924 isumsplit 11968 arisum2 11976 efaddlem 12151 eftlub 12167 ef4p 12171 moddvds 12276 gcdaddm 12471 gcdmultipled 12480 bezoutlemb 12487 pcmpt 12832 4sqlem11 12890 mulgnn0dir 13655 limcimolemlt 15303 dvcnp2cntop 15338 dvmptcmulcn 15360 dveflem 15365 dvef 15366 plymullem1 15387 sin0pilem1 15420 sin2kpi 15450 cos2kpi 15451 coshalfpim 15462 sinkpi 15486 |
| Copyright terms: Public domain | W3C validator |