| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxmpt | GIF version | ||
| Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| pfxmpt | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 10271 | . . 3 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0) | |
| 2 | pfxval 11165 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) | |
| 3 | 1, 2 | sylan2 286 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| 4 | simpl 109 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴) | |
| 5 | 1 | adantl 277 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0) |
| 6 | 0elfz 10275 | . . . 4 ⊢ (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿)) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿)) |
| 8 | simpr 110 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆))) | |
| 9 | swrdval2 11142 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) | |
| 10 | 4, 7, 8, 9 | syl3anc 1250 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) |
| 11 | nn0cn 9340 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
| 12 | 11 | subid1d 8407 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿) |
| 13 | 1, 12 | syl 14 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿) |
| 14 | 13 | oveq2d 5983 | . . . 4 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
| 15 | 14 | adantl 277 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
| 16 | elfzonn0 10347 | . . . . . 6 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0) | |
| 17 | nn0cn 9340 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 18 | 17 | addridd 8256 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥) |
| 19 | 16, 18 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥) |
| 20 | 19 | fveq2d 5603 | . . . 4 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
| 21 | 20 | adantl 277 | . . 3 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
| 22 | 15, 21 | mpteq12dva 4141 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
| 23 | 3, 10, 22 | 3eqtrd 2244 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 〈cop 3646 ↦ cmpt 4121 ‘cfv 5290 (class class class)co 5967 0cc0 7960 + caddc 7963 − cmin 8278 ℕ0cn0 9330 ...cfz 10165 ..^cfzo 10299 ♯chash 10957 Word cword 11031 substr csubstr 11136 prefix cpfx 11163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-ihash 10958 df-word 11032 df-substr 11137 df-pfx 11164 |
| This theorem is referenced by: pfxres 11172 pfxf 11173 |
| Copyright terms: Public domain | W3C validator |