| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxmpt | GIF version | ||
| Description: Value of the prefix extractor as a mapping. (Contributed by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| pfxmpt | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 10310 | . . 3 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → 𝐿 ∈ ℕ0) | |
| 2 | pfxval 11206 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ ℕ0) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) | |
| 3 | 1, 2 | sylan2 286 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑆 substr 〈0, 𝐿〉)) |
| 4 | simpl 109 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝑆 ∈ Word 𝐴) | |
| 5 | 1 | adantl 277 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ ℕ0) |
| 6 | 0elfz 10314 | . . . 4 ⊢ (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿)) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0...𝐿)) |
| 8 | simpr 110 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 𝐿 ∈ (0...(♯‘𝑆))) | |
| 9 | swrdval2 11183 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) | |
| 10 | 4, 7, 8, 9 | syl3anc 1271 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈0, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0)))) |
| 11 | nn0cn 9379 | . . . . . . 7 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℂ) | |
| 12 | 11 | subid1d 8446 | . . . . . 6 ⊢ (𝐿 ∈ ℕ0 → (𝐿 − 0) = 𝐿) |
| 13 | 1, 12 | syl 14 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (𝐿 − 0) = 𝐿) |
| 14 | 13 | oveq2d 6017 | . . . 4 ⊢ (𝐿 ∈ (0...(♯‘𝑆)) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
| 15 | 14 | adantl 277 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (0..^(𝐿 − 0)) = (0..^𝐿)) |
| 16 | elfzonn0 10386 | . . . . . 6 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → 𝑥 ∈ ℕ0) | |
| 17 | nn0cn 9379 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
| 18 | 17 | addridd 8295 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥) |
| 19 | 16, 18 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑥 + 0) = 𝑥) |
| 20 | 19 | fveq2d 5631 | . . . 4 ⊢ (𝑥 ∈ (0..^(𝐿 − 0)) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
| 21 | 20 | adantl 277 | . . 3 ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝐿 − 0))) → (𝑆‘(𝑥 + 0)) = (𝑆‘𝑥)) |
| 22 | 15, 21 | mpteq12dva 4165 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝐿 − 0)) ↦ (𝑆‘(𝑥 + 0))) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
| 23 | 3, 10, 22 | 3eqtrd 2266 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 prefix 𝐿) = (𝑥 ∈ (0..^𝐿) ↦ (𝑆‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 ↦ cmpt 4145 ‘cfv 5318 (class class class)co 6001 0cc0 7999 + caddc 8002 − cmin 8317 ℕ0cn0 9369 ...cfz 10204 ..^cfzo 10338 ♯chash 10997 Word cword 11071 substr csubstr 11177 prefix cpfx 11204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 df-ihash 10998 df-word 11072 df-substr 11178 df-pfx 11205 |
| This theorem is referenced by: pfxres 11213 pfxf 11214 |
| Copyright terms: Public domain | W3C validator |