Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnlimci | GIF version |
Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnlimci.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) |
cnlimci.c | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
cnlimci | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5494 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
2 | oveq2 5859 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹 limℂ 𝑥) = (𝐹 limℂ 𝐵)) | |
3 | 1, 2 | eleq12d 2241 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
4 | cnlimci.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) | |
5 | cncfrss 13317 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐴 ⊆ ℂ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
7 | cncfrss2 13318 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐷 ⊆ ℂ) | |
8 | 4, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
9 | ssid 3167 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
10 | cncfss 13325 | . . . . 5 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) | |
11 | 8, 9, 10 | sylancl 411 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) |
12 | 11, 4 | sseldd 3148 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
13 | cnlimcim 13395 | . . . . 5 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | |
14 | 13 | imp 123 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
15 | 14 | simprd 113 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
16 | 6, 12, 15 | syl2anc 409 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
17 | cnlimci.c | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
18 | 3, 16, 17 | rspcdva 2839 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ⟶wf 5192 ‘cfv 5196 (class class class)co 5851 ℂcc 7761 –cn→ccncf 13312 limℂ climc 13378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 ax-arch 7882 ax-caucvg 7883 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-map 6625 df-pm 6626 df-sup 6958 df-inf 6959 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-3 8927 df-4 8928 df-n0 9125 df-z 9202 df-uz 9477 df-q 9568 df-rp 9600 df-xneg 9718 df-xadd 9719 df-seqfrec 10391 df-exp 10465 df-cj 10795 df-re 10796 df-im 10797 df-rsqrt 10951 df-abs 10952 df-rest 12570 df-topgen 12589 df-psmet 12742 df-xmet 12743 df-met 12744 df-bl 12745 df-mopn 12746 df-top 12751 df-topon 12764 df-bases 12796 df-cn 12943 df-cnp 12944 df-cncf 13313 df-limced 13380 |
This theorem is referenced by: cnmptlimc 13398 |
Copyright terms: Public domain | W3C validator |