| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnlimci | GIF version | ||
| Description: If 𝐹 is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.) |
| Ref | Expression |
|---|---|
| cnlimci.f | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) |
| cnlimci.c | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnlimci | ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5594 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) | |
| 2 | oveq2 5970 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐹 limℂ 𝑥) = (𝐹 limℂ 𝐵)) | |
| 3 | 1, 2 | eleq12d 2277 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥) ↔ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
| 4 | cnlimci.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐷)) | |
| 5 | cncfrss 15132 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐴 ⊆ ℂ) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 7 | cncfrss2 15133 | . . . . . 6 ⊢ (𝐹 ∈ (𝐴–cn→𝐷) → 𝐷 ⊆ ℂ) | |
| 8 | 4, 7 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ℂ) |
| 9 | ssid 3217 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 10 | cncfss 15140 | . . . . 5 ⊢ ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) | |
| 11 | 8, 9, 10 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝐴–cn→𝐷) ⊆ (𝐴–cn→ℂ)) |
| 12 | 11, 4 | sseldd 3198 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
| 13 | cnlimcim 15228 | . . . . 5 ⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) | |
| 14 | 13 | imp 124 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥))) |
| 15 | 14 | simprd 114 | . . 3 ⊢ ((𝐴 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→ℂ)) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
| 16 | 6, 12, 15 | syl2anc 411 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)) |
| 17 | cnlimci.c | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 18 | 3, 16, 17 | rspcdva 2886 | 1 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ⟶wf 5281 ‘cfv 5285 (class class class)co 5962 ℂcc 7953 –cn→ccncf 15127 limℂ climc 15211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-map 6755 df-pm 6756 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-xneg 9924 df-xadd 9925 df-seqfrec 10625 df-exp 10716 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-rest 13158 df-topgen 13177 df-psmet 14390 df-xmet 14391 df-met 14392 df-bl 14393 df-mopn 14394 df-top 14555 df-topon 14568 df-bases 14600 df-cn 14745 df-cnp 14746 df-cncf 15128 df-limced 15213 |
| This theorem is referenced by: cnmptlimc 15231 |
| Copyright terms: Public domain | W3C validator |