ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncff GIF version

Theorem cncff 14899
Description: A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncff (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)

Proof of Theorem cncff
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 14897 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
2 cncfrss2 14898 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
3 elcncf 14895 . . . 4 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
41, 2, 3syl2anc 411 . . 3 (𝐹 ∈ (𝐴cn𝐵) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
54ibi 176 . 2 (𝐹 ∈ (𝐴cn𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
65simpld 112 1 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  cc 7896   < clt 8080  cmin 8216  +crp 9747  abscabs 11181  cnccncf 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718  df-cncf 14893
This theorem is referenced by:  cncfss  14905  climcncf  14906  cncfco  14913  cncfmpt1f  14920  negfcncf  14928  mulcncflem  14929  mulcncf  14930  divcncfap  14936  maxcncf  14937  mincncf  14938  ivthdec  14966  ivthreinc  14967  cnmptlimc  14996  dvrecap  15035  sincn  15091  coscn  15092
  Copyright terms: Public domain W3C validator