ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt10 GIF version

Theorem 1lt10 9327
Description: 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
1lt10 1 < 10

Proof of Theorem 1lt10
StepHypRef Expression
1 1lt2 8896 . 2 1 < 2
2 2lt10 9326 . 2 2 < 10
3 1re 7772 . . 3 1 ∈ ℝ
4 2re 8797 . . 3 2 ∈ ℝ
5 10re 9207 . . 3 10 ∈ ℝ
63, 4, 5lttri 7875 . 2 ((1 < 2 ∧ 2 < 10) → 1 < 10)
71, 2, 6mp2an 422 1 1 < 10
Colors of variables: wff set class
Syntax hints:   class class class wbr 3929  0cc0 7627  1c1 7628   < clt 7807  2c2 8778  cdc 9189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-xp 4545  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7809  df-mnf 7810  df-ltxr 7812  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-dec 9190
This theorem is referenced by:  0.999...  11297
  Copyright terms: Public domain W3C validator