ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusbas GIF version

Theorem qusbas 12746
Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusbas.u (𝜑𝑈 = (𝑅 /s ))
qusbas.v (𝜑𝑉 = (Base‘𝑅))
qusbas.e (𝜑𝑊)
qusbas.r (𝜑𝑅𝑍)
Assertion
Ref Expression
qusbas (𝜑 → (𝑉 / ) = (Base‘𝑈))

Proof of Theorem qusbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusbas.u . . 3 (𝜑𝑈 = (𝑅 /s ))
2 qusbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2177 . . 3 (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥] )
4 qusbas.e . . 3 (𝜑𝑊)
5 qusbas.r . . 3 (𝜑𝑅𝑍)
61, 2, 3, 4, 5qusval 12743 . 2 (𝜑𝑈 = ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅))
71, 2, 3, 4, 5quslem 12744 . 2 (𝜑 → (𝑥𝑉 ↦ [𝑥] ):𝑉onto→(𝑉 / ))
86, 2, 7, 5imasbas 12727 1 (𝜑 → (𝑉 / ) = (Base‘𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cmpt 4064  cfv 5216  (class class class)co 5874  [cec 6532   / cqs 6533  Basecbs 12461   /s cqus 12720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-tp 3600  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-ec 6536  df-qs 6540  df-pnf 7993  df-mnf 7994  df-ltxr 7996  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-plusg 12548  df-mulr 12549  df-iimas 12722  df-qus 12723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator