Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptd3 | GIF version |
Description: Deduction version of fvmpt 5562. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd3.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd3.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptd3.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd3.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd3 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd3.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
2 | fvmptd3.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | nfcv 2307 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2307 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
5 | fvmptd3.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
6 | fvmptd3.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
7 | 3, 4, 5, 6 | fvmptf 5577 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
8 | 1, 2, 7 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ↦ cmpt 4042 ‘cfv 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-sbc 2951 df-csb 3045 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 |
This theorem is referenced by: ofvalg 6058 fival 6931 inl11 7026 djuss 7031 ctmlemr 7069 ctssdclemn0 7071 ctssdc 7074 enumctlemm 7075 nninfisollemne 7091 nninfisol 7093 fodjum 7106 fodju0 7107 ismkvnex 7115 cc2lem 7203 xrnegiso 11199 summodclem3 11317 fsumf1o 11327 fsum3ser 11334 fsumadd 11343 sumsnf 11346 prodfdivap 11484 prodmodclem3 11512 prodmodclem2a 11513 fprodseq 11520 fprodf1o 11525 prodsnf 11529 fprodshft 11555 fprodrev 11556 eulerthlemh 12159 eulerthlemth 12160 phisum 12168 1arithlem2 12290 ennnfonelemjn 12331 ennnfonelemp1 12335 ctiunctlemfo 12368 nninfdclemf 12378 nninfdclemp1 12379 ntrval 12710 clsval 12711 cnpval 12798 upxp 12872 uptx 12874 txlm 12879 cnmpt11 12883 cnmpt21 12891 ispsmet 12923 mopnval 13042 bdxmet 13101 cncfmptc 13182 cncfmptid 13183 addccncf 13186 negcncf 13188 ivthdec 13222 limcmpted 13232 cnmptlimc 13243 dvrecap 13277 dveflem 13287 dvef 13288 lgsval 13505 lgsfvalg 13506 lgsdir 13536 lgsdilem2 13537 lgsdi 13538 lgsne0 13539 subctctexmid 13841 nninffeq 13860 trilpolemclim 13875 trilpolemcl 13876 trilpolemisumle 13877 trilpolemeq1 13879 trilpolemlt1 13880 iswomni0 13890 dceqnconst 13898 dcapnconst 13899 nconstwlpolemgt0 13902 |
Copyright terms: Public domain | W3C validator |