Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptd3 | GIF version |
Description: Deduction version of fvmpt 5573. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd3.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd3.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptd3.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd3.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd3 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd3.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
2 | fvmptd3.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2312 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
5 | fvmptd3.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
6 | fvmptd3.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
7 | 3, 4, 5, 6 | fvmptf 5588 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
8 | 1, 2, 7 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ↦ cmpt 4050 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: ofvalg 6070 fival 6947 inl11 7042 djuss 7047 ctmlemr 7085 ctssdclemn0 7087 ctssdc 7090 enumctlemm 7091 nninfisollemne 7107 nninfisol 7109 fodjum 7122 fodju0 7123 ismkvnex 7131 nninfwlporlemd 7148 nninfwlpoimlemg 7151 nninfwlpoimlemginf 7152 cc2lem 7228 xrnegiso 11225 summodclem3 11343 fsumf1o 11353 fsum3ser 11360 fsumadd 11369 sumsnf 11372 prodfdivap 11510 prodmodclem3 11538 prodmodclem2a 11539 fprodseq 11546 fprodf1o 11551 prodsnf 11555 fprodshft 11581 fprodrev 11582 eulerthlemh 12185 eulerthlemth 12186 phisum 12194 1arithlem2 12316 ennnfonelemjn 12357 ennnfonelemp1 12361 ctiunctlemfo 12394 nninfdclemf 12404 nninfdclemp1 12405 plusffvalg 12616 grpidvalg 12627 issubm 12695 grpinvfvalg 12745 grpinvval 12746 grpsubfvalg 12748 ntrval 12904 clsval 12905 cnpval 12992 upxp 13066 uptx 13068 txlm 13073 cnmpt11 13077 cnmpt21 13085 ispsmet 13117 mopnval 13236 bdxmet 13295 cncfmptc 13376 cncfmptid 13377 addccncf 13380 negcncf 13382 ivthdec 13416 limcmpted 13426 cnmptlimc 13437 dvrecap 13471 dveflem 13481 dvef 13482 lgsval 13699 lgsfvalg 13700 lgsdir 13730 lgsdilem2 13731 lgsdi 13732 lgsne0 13733 subctctexmid 14034 nninffeq 14053 trilpolemclim 14068 trilpolemcl 14069 trilpolemisumle 14070 trilpolemeq1 14072 trilpolemlt1 14073 iswomni0 14083 dceqnconst 14091 dcapnconst 14092 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |