![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptd3 | GIF version |
Description: Deduction version of fvmpt 5596. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvmptd3.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmptd3.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptd3.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd3.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
fvmptd3 | ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd3.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
2 | fvmptd3.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
5 | fvmptd3.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
6 | fvmptd3.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
7 | 3, 4, 5, 6 | fvmptf 5611 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
8 | 1, 2, 7 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ↦ cmpt 4066 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: ofvalg 6095 fival 6972 inl11 7067 djuss 7072 ctmlemr 7110 ctssdclemn0 7112 ctssdc 7115 enumctlemm 7116 nninfisollemne 7132 nninfisol 7134 fodjum 7147 fodju0 7148 ismkvnex 7156 nninfwlporlemd 7173 nninfwlpoimlemg 7176 nninfwlpoimlemginf 7177 cc2lem 7268 xrnegiso 11273 summodclem3 11391 fsumf1o 11401 fsum3ser 11408 fsumadd 11417 sumsnf 11420 prodfdivap 11558 prodmodclem3 11586 prodmodclem2a 11587 fprodseq 11594 fprodf1o 11599 prodsnf 11603 fprodshft 11629 fprodrev 11630 eulerthlemh 12234 eulerthlemth 12235 phisum 12243 1arithlem2 12365 ennnfonelemjn 12406 ennnfonelemp1 12410 ctiunctlemfo 12443 nninfdclemf 12453 nninfdclemp1 12454 ptex 12719 divsfvalg 12754 plusffvalg 12787 grpidvalg 12798 issubm 12869 grpinvfvalg 12921 grpinvval 12922 grpsubfvalg 12924 grplactfval 12977 mulgfvalg 12991 issubg 13039 subgex 13042 isnsg 13068 mgpvalg 13139 srglmhm 13182 srgrmhm 13183 opprvalg 13247 reldvdsrsrg 13267 dvdsrvald 13268 isunitd 13281 invrfvald 13297 dvrfvald 13308 issubrg 13348 aprval 13378 aprap 13382 scaffvalg 13402 lsssetm 13450 lspfval 13481 lspval 13483 sraval 13529 rlmvalg 13546 ntrval 13750 clsval 13751 cnpval 13838 upxp 13912 uptx 13914 txlm 13919 cnmpt11 13923 cnmpt21 13931 ispsmet 13963 mopnval 14082 bdxmet 14141 cncfmptc 14222 cncfmptid 14223 addccncf 14226 negcncf 14228 ivthdec 14262 limcmpted 14272 cnmptlimc 14283 dvrecap 14317 dveflem 14327 dvef 14328 lgsval 14545 lgsfvalg 14546 lgsdir 14576 lgsdilem2 14577 lgsdi 14578 lgsne0 14579 lgseisenlem2 14591 subctctexmid 14891 nninffeq 14910 trilpolemclim 14925 trilpolemcl 14926 trilpolemisumle 14927 trilpolemeq1 14929 trilpolemlt1 14930 iswomni0 14940 dceqnconst 14949 dcapnconst 14950 nconstwlpolemgt0 14953 |
Copyright terms: Public domain | W3C validator |