| Intuitionistic Logic Explorer Theorem List (p. 103 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fzrevral3 10201* | Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑)) | ||
| Theorem | fzshftral 10202* | Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
| Theorem | ige2m1fz1 10203 | Membership of an integer greater than 1 decreased by 1 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ (1...𝑁)) | ||
| Theorem | ige2m1fz 10204 | Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁)) | ||
| Theorem | fz01or 10205 | An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
| ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) | ||
Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0". | ||
| Theorem | elfz2nn0 10206 | Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | ||
| Theorem | fznn0 10207 | Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | ||
| Theorem | elfznn0 10208 | A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | elfz3nn0 10209 | The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | ||
| Theorem | fz0ssnn0 10210 | Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.) |
| ⊢ (0...𝑁) ⊆ ℕ0 | ||
| Theorem | fz1ssfz0 10211 | Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (1...𝑁) ⊆ (0...𝑁) | ||
| Theorem | 0elfz 10212 | 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | ||
| Theorem | nn0fz0 10213 | A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | ||
| Theorem | elfz0add 10214 | An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵)))) | ||
| Theorem | fz0sn 10215 | An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.) |
| ⊢ (0...0) = {0} | ||
| Theorem | fz0tp 10216 | An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| ⊢ (0...2) = {0, 1, 2} | ||
| Theorem | fz0to3un2pr 10217 | An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (0...3) = ({0, 1} ∪ {2, 3}) | ||
| Theorem | fz0to4untppr 10218 | An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
| ⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) | ||
| Theorem | elfz0ubfz0 10219 | An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿)) | ||
| Theorem | elfz0fzfz0 10220 | A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.) |
| ⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁)) | ||
| Theorem | fz0fzelfz0 10221 | If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.) |
| ⊢ ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅)) | ||
| Theorem | fznn0sub2 10222 | Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | uzsubfz0 10223 | Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − 𝐿) ∈ (0...𝑁)) | ||
| Theorem | fz0fzdiffz0 10224 | The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.) |
| ⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
| Theorem | elfzmlbm 10225 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) | ||
| Theorem | elfzmlbp 10226 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
| Theorem | fzctr 10227 | Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | ||
| Theorem | difelfzle 10228 | The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾 ≤ 𝑀) → (𝑀 − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | difelfznle 10229 | The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | nn0split 10230 | Express the set of nonnegative integers as the disjoint (see nn0disj 10232) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.) |
| ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
| Theorem | nnsplit 10231 | Express the set of positive integers as the disjoint union of the first 𝑁 values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝑁 ∈ ℕ → ℕ = ((1...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
| Theorem | nn0disj 10232 | The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
| ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ | ||
| Theorem | 1fv 10233 | A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) |
| ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) | ||
| Theorem | 4fvwrd4 10234* | The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
| ⊢ ((𝐿 ∈ (ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) | ||
| Theorem | 2ffzeq 10235* | Two functions over 0 based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝐹:(0...𝑀)⟶𝑋 ∧ 𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
| Syntax | cfzo 10236 | Syntax for half-open integer ranges. |
| class ..^ | ||
| Definition | df-fzo 10237* | Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 10103, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 10272 with fzsplit 10145, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | ||
| Theorem | fzof 10238 | Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | ||
| Theorem | elfzoel1 10239 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | ||
| Theorem | elfzoel2 10240 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | ||
| Theorem | elfzoelz 10241 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | ||
| Theorem | fzoval 10242 | Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | ||
| Theorem | elfzo 10243 | Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
| Theorem | elfzo2 10244 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | ||
| Theorem | elfzouz 10245 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | nelfzo 10246 | An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾))) | ||
| Theorem | fzodcel 10247 | Decidability of membership in a half-open integer interval. (Contributed by Jim Kingdon, 25-Aug-2022.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzolb 10248 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternate notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | ||
| Theorem | fzolb2 10249 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternate notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 < 𝑁)) | ||
| Theorem | elfzole1 10250 | A member in a half-open integer interval is greater than or equal to the lower bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝐾) | ||
| Theorem | elfzolt2 10251 | A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) | ||
| Theorem | elfzolt3 10252 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 < 𝑁) | ||
| Theorem | elfzolt2b 10253 | A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝐾..^𝑁)) | ||
| Theorem | elfzolt3b 10254 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzonel 10255 | A half-open range does not contain its right endpoint. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ ¬ 𝐵 ∈ (𝐴..^𝐵) | ||
| Theorem | elfzouz2 10256 | The upper bound of a half-open range is greater or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | ||
| Theorem | elfzofz 10257 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfzo3 10258 | Express membership in a half-open integer interval in terms of the "less than or equal" and "less than" predicates on integers, resp. 𝐾 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐾, 𝐾 ∈ (𝐾..^𝑁) ↔ 𝐾 < 𝑁. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝐾..^𝑁))) | ||
| Theorem | fzom 10259* | A half-open integer interval is inhabited iff it contains its left endpoint. (Contributed by Jim Kingdon, 20-Apr-2020.) |
| ⊢ (∃𝑥 𝑥 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzossfz 10260 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴..^𝐵) ⊆ (𝐴...𝐵) | ||
| Theorem | fzon 10261 | A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) | ||
| Theorem | fzonlt0 10262 | A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 < 𝑁 ↔ (𝑀..^𝑁) = ∅)) | ||
| Theorem | fzo0 10263 | Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴..^𝐴) = ∅ | ||
| Theorem | fzonnsub 10264 | If 𝐾 < 𝑁 then 𝑁 − 𝐾 is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝐾) ∈ ℕ) | ||
| Theorem | fzonnsub2 10265 | If 𝑀 < 𝑁 then 𝑁 − 𝑀 is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) | ||
| Theorem | fzoss1 10266 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzoss2 10267 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzossrbm1 10268 | Subset of a half open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.) |
| ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | ||
| Theorem | fzo0ss1 10269 | Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (1..^𝑁) ⊆ (0..^𝑁) | ||
| Theorem | fzossnn0 10270 | A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ ℕ0) | ||
| Theorem | fzospliti 10271 | One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) | ||
| Theorem | fzosplit 10272 | Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) = ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) | ||
| Theorem | fzodisj 10273 | Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴..^𝐵) ∩ (𝐵..^𝐶)) = ∅ | ||
| Theorem | fzouzsplit 10274 | Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | ||
| Theorem | fzouzdisj 10275 | A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ | ||
| Theorem | lbfzo0 10276 | An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) | ||
| Theorem | elfzo0 10277 | Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | ||
| Theorem | fzo1fzo0n0 10278 | An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
| ⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0)) | ||
| Theorem | elfzo0z 10279 | Membership in a half-open range of nonnegative integers, generalization of elfzo0 10277 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | ||
| Theorem | elfzo0le 10280 | A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ≤ 𝐵) | ||
| Theorem | elfzonn0 10281 | A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | fzonmapblen 10282 | The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) | ||
| Theorem | fzofzim 10283 | If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀)) | ||
| Theorem | fzossnn 10284 | Half-open integer ranges starting with 1 are subsets of ℕ. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
| ⊢ (1..^𝑁) ⊆ ℕ | ||
| Theorem | elfzo1 10285 | Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) | ||
| Theorem | fzo0m 10286* | A half-open integer range based at 0 is inhabited precisely if the upper bound is a positive integer. (Contributed by Jim Kingdon, 20-Apr-2020.) |
| ⊢ (∃𝑥 𝑥 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) | ||
| Theorem | fzoaddel 10287 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷))) | ||
| Theorem | fzoaddel2 10288 | Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (0..^(𝐵 − 𝐶)) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + 𝐶) ∈ (𝐶..^𝐵)) | ||
| Theorem | fzosubel 10289 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐷) ∈ ((𝐵 − 𝐷)..^(𝐶 − 𝐷))) | ||
| Theorem | fzosubel2 10290 | Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ ((𝐵 + 𝐶)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (𝐶..^𝐷)) | ||
| Theorem | fzosubel3 10291 | Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐵) ∈ (0..^𝐷)) | ||
| Theorem | eluzgtdifelfzo 10292 | Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ≥‘𝐴) ∧ 𝐵 < 𝐴) → (𝑁 − 𝐴) ∈ (0..^(𝑁 − 𝐵)))) | ||
| Theorem | ige2m2fzo 10293 | Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1))) | ||
| Theorem | fzocatel 10294 | Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (0..^𝐶)) | ||
| Theorem | ubmelfzo 10295 | If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) | ||
| Theorem | elfzodifsumelfzo 10296 | If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.) |
| ⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁 − 𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))) | ||
| Theorem | elfzom1elp1fzo 10297 | Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) | ||
| Theorem | elfzom1elfzo 10298 | Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^𝑁)) | ||
| Theorem | fzval3 10299 | Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) | ||
| Theorem | fzosn 10300 | Expressing a singleton as a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴..^(𝐴 + 1)) = {𝐴}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |