HomeHome Intuitionistic Logic Explorer
Theorem List (p. 103 of 132)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10201-10300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremseq3shft2 10201* Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
 
Theoremserf 10202* An infinite series of complex terms is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
 
Theoremserfre 10203* An infinite series of real numbers is a function from to . (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)       (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
 
Theoremmonoord 10204* Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))       (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
 
Theoremmonoord2 10205* Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))       (𝜑 → (𝐹𝑁) ≤ (𝐹𝑀))
 
Theoremser3mono 10206* The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ≤ (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremseq3split 10207* Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑀 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
 
Theoremseq3-1p 10208* Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = ((𝐹𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
 
Theoremseq3caopr3 10209* Lemma for seq3caopr2 10210. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))    &   ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremseq3caopr2 10210* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremseq3caopr 10211* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremiseqf1olemkle 10212* Lemma for seq3f1o 10232. (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)       (𝜑𝐾 ≤ (𝐽𝐾))
 
Theoremiseqf1olemklt 10213* Lemma for seq3f1o 10232. (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))       (𝜑𝐾 < (𝐽𝐾))
 
Theoremiseqf1olemqcl 10214 Lemma for seq3f1o 10232. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))       (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) ∈ (𝑀...𝑁))
 
Theoremiseqf1olemqval 10215* Lemma for seq3f1o 10232. Value of the function 𝑄. (Contributed by Jim Kingdon, 28-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
 
Theoremiseqf1olemnab 10216* Lemma for seq3f1o 10232. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑 → ¬ (𝐴 ∈ (𝐾...(𝐽𝐾)) ∧ ¬ 𝐵 ∈ (𝐾...(𝐽𝐾))))
 
Theoremiseqf1olemab 10217* Lemma for seq3f1o 10232. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑𝐴 ∈ (𝐾...(𝐽𝐾)))    &   (𝜑𝐵 ∈ (𝐾...(𝐽𝐾)))       (𝜑𝐴 = 𝐵)
 
Theoremiseqf1olemnanb 10218* Lemma for seq3f1o 10232. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))    &   (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))       (𝜑𝐴 = 𝐵)
 
Theoremiseqf1olemqf 10219* Lemma for seq3f1o 10232. Domain and codomain of 𝑄. (Contributed by Jim Kingdon, 26-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
 
Theoremiseqf1olemmo 10220* Lemma for seq3f1o 10232. Showing that 𝑄 is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   (𝜑𝐵 ∈ (𝑀...𝑁))    &   (𝜑 → (𝑄𝐴) = (𝑄𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremiseqf1olemqf1o 10221* Lemma for seq3f1o 10232. 𝑄 is a permutation of (𝑀...𝑁). 𝑄 is formed from the constant portion of 𝐽, followed by the single element 𝐾 (at position 𝐾), followed by the rest of J (with the 𝐾 deleted and the elements before 𝐾 moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))       (𝜑𝑄:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
 
Theoremiseqf1olemqk 10222* Lemma for seq3f1o 10232. 𝑄 is constant for one more position than 𝐽 is. (Contributed by Jim Kingdon, 21-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)       (𝜑 → ∀𝑥 ∈ (𝑀...𝐾)(𝑄𝑥) = 𝑥)
 
Theoremiseqf1olemjpcl 10223* Lemma for seq3f1o 10232. A closure lemma involving 𝐽 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
 
Theoremiseqf1olemqpcl 10224* Lemma for seq3f1o 10232. A closure lemma involving 𝑄 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
 
Theoremiseqf1olemfvp 10225* Lemma for seq3f1o 10232. (Contributed by Jim Kingdon, 30-Aug-2022.)
(𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑𝐴 ∈ (𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (𝑇 / 𝑓𝑃𝐴) = (𝐺‘(𝑇𝐴)))
 
Theoremseq3f1olemqsumkj 10226* Lemma for seq3f1o 10232. 𝑄 gives the same sum as 𝐽 in the range (𝐾...(𝐽𝐾)). (Contributed by Jim Kingdon, 29-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘(𝐽𝐾)) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘(𝐽𝐾)))
 
Theoremseq3f1olemqsumk 10227* Lemma for seq3f1o 10232. 𝑄 gives the same sum as 𝐽 in the range (𝐾...𝑁). (Contributed by Jim Kingdon, 22-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝐾( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝐾( + , 𝑄 / 𝑓𝑃)‘𝑁))
 
Theoremseq3f1olemqsum 10228* Lemma for seq3f1o 10232. 𝑄 gives the same sum as 𝐽. (Contributed by Jim Kingdon, 21-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑𝐾 ≠ (𝐽𝐾))    &   𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝑄 / 𝑓𝑃)‘𝑁))
 
Theoremseq3f1olemstep 10229* Lemma for seq3f1o 10232. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   (𝜑 → ∀𝑥 ∈ (𝑀..^𝐾)(𝐽𝑥) = 𝑥)    &   (𝜑 → (seq𝑀( + , 𝐽 / 𝑓𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝐾)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
 
Theoremseq3f1olemp 10230* Lemma for seq3f1o 10232. Existence of a constant permutation of (𝑀...𝑁) which leads to the same sum as the permutation 𝐹 itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))    &   𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))       (𝜑 → ∃𝑓(𝑓:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) ∧ ∀𝑥 ∈ (𝑀...𝑁)(𝑓𝑥) = 𝑥 ∧ (seq𝑀( + , 𝑃)‘𝑁) = (seq𝑀( + , 𝐿)‘𝑁)))
 
Theoremseq3f1oleml 10231* Lemma for seq3f1o 10232. This is more or less the result, but stated in terms of 𝐹 and 𝐺 without 𝐻. 𝐿 and 𝐻 may differ in terms of what happens to terms after 𝑁. The terms after 𝑁 don't matter for the value at 𝑁 but we need some definition given the way our theorems concerning seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   𝐿 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐹𝑥)), (𝐺𝑀)))       (𝜑 → (seq𝑀( + , 𝐿)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 
Theoremseq3f1o 10232* Rearrange a sum via an arbitrary bijection on (𝑀...𝑁). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐺‘(𝐹𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
 
Theoremser3add 10233* The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 4-Oct-2022.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremser3sub 10234* The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))       (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) − (seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremseq3id3 10235* A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a + -idempotent sums (or "+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
(𝜑 → (𝑍 + 𝑍) = 𝑍)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)    &   (𝜑𝑍𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 
Theoremseq3id 10236* Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for +) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑥)    &   (𝜑𝑍𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑 → (𝐹𝑁) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑥) = 𝑍)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
 
Theoremseq3id2 10237* The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)    &   (𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremseq3homo 10238* Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)       (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))
 
Theoremseq3z 10239* If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)    &   ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)    &   (𝜑𝐾 ∈ (𝑀...𝑁))    &   (𝜑 → (𝐹𝐾) = 𝑍)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
 
Theoremseqfeq3 10240* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
(𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))       (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
 
Theoremseq3distr 10241* The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
 
Theoremser0 10242 The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0)
 
Theoremser0f 10243 A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0}))
 
Theoremfser0const 10244* Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (𝑛𝑍 ↦ if(𝑛𝑁, ((𝑍 × {0})‘𝑛), 0)) = (𝑍 × {0}))
 
Theoremser3ge0 10245* A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremser3le 10246* Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
 
4.6.6  Integer powers
 
Syntaxcexp 10247 Extend class notation to include exponentiation of a complex number to an integer power.
class
 
Definitiondf-exp 10248* Define exponentiation to nonnegative integer powers. For example, (5↑2) = 25 (ex-exp 12835).

This definition is not meant to be used directly; instead, exp0 10252 and expp1 10255 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (0exp0e1 10253).

4-Jun-2014: The definition was extended to include negative integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 12835). The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.)

↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
 
Theoremexp3vallem 10249 Lemma for exp3val 10250. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (seq1( · , (ℕ × {𝐴}))‘𝑁) # 0)
 
Theoremexp3val 10250 Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
 
Theoremexpnnval 10251 Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
 
Theoremexp0 10252 Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1, following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
(𝐴 ∈ ℂ → (𝐴↑0) = 1)
 
Theorem0exp0e1 10253 0↑0 = 1 (common case). This is our convention. It follows the convention used by Gleason; see Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by David A. Wheeler, 8-Dec-2018.)
(0↑0) = 1
 
Theoremexp1 10254 Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
(𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
 
Theoremexpp1 10255 Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
 
Theoremexpnegap0 10256 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
 
Theoremexpineg2 10257 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
 
Theoremexpn1ap0 10258 A number to the negative one power is the reciprocal. (Contributed by Jim Kingdon, 8-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴↑-1) = (1 / 𝐴))
 
Theoremexpcllem 10259* Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
𝐹 ⊆ ℂ    &   ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)    &   1 ∈ 𝐹       ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
 
Theoremexpcl2lemap 10260* Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
𝐹 ⊆ ℂ    &   ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)    &   1 ∈ 𝐹    &   ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)       ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
 
Theoremnnexpcl 10261 Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ)
 
Theoremnn0expcl 10262 Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.)
((𝐴 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℕ0)
 
Theoremzexpcl 10263 Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
 
Theoremqexpcl 10264 Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℚ)
 
Theoremreexpcl 10265 Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℝ)
 
Theoremexpcl 10266 Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
 
Theoremrpexpcl 10267 Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
 
Theoremreexpclzap 10268 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 9-Jun-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ)
 
Theoremqexpclz 10269 Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.)
((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℚ)
 
Theoremm1expcl2 10270 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
 
Theoremm1expcl 10271 Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℤ)
 
Theoremexpclzaplem 10272* Closure law for integer exponentiation. Lemma for expclzap 10273 and expap0i 10280. (Contributed by Jim Kingdon, 9-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
 
Theoremexpclzap 10273 Closure law for integer exponentiation. (Contributed by Jim Kingdon, 9-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
 
Theoremnn0expcli 10274 Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.)
𝐴 ∈ ℕ0    &   𝑁 ∈ ℕ0       (𝐴𝑁) ∈ ℕ0
 
Theoremnn0sqcl 10275 The square of a nonnegative integer is a nonnegative integer. (Contributed by Stefan O'Rear, 16-Oct-2014.)
(𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0)
 
Theoremexpm1t 10276 Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
 
Theorem1exp 10277 Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
(𝑁 ∈ ℤ → (1↑𝑁) = 1)
 
Theoremexpap0 10278 Positive integer exponentiation is apart from zero iff its mantissa is apart from zero. That it is easier to prove this first, and then prove expeq0 10279 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." (Remark of [Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))
 
Theoremexpeq0 10279 Positive integer exponentiation is 0 iff its mantissa is 0. (Contributed by NM, 23-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
 
Theoremexpap0i 10280 Integer exponentiation is apart from zero if its mantissa is apart from zero. (Contributed by Jim Kingdon, 10-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) # 0)
 
Theoremexpgt0 10281 Nonnegative integer exponentiation with a positive mantissa is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴𝑁))
 
Theoremexpnegzap 10282 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
 
Theorem0exp 10283 Value of zero raised to a positive integer power. (Contributed by NM, 19-Aug-2004.)
(𝑁 ∈ ℕ → (0↑𝑁) = 0)
 
Theoremexpge0 10284 Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))
 
Theoremexpge1 10285 Nonnegative integer exponentiation with a mantissa greater than or equal to 1 is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴𝑁))
 
Theoremexpgt1 10286 Positive integer exponentiation with a mantissa greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))
 
Theoremmulexp 10287 Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
 
Theoremmulexpzap 10288 Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
 
Theoremexprecap 10289 Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 10-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
 
Theoremexpadd 10290 Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.)
((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
Theoremexpaddzaplem 10291 Lemma for expaddzap 10292. (Contributed by Jim Kingdon, 10-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
Theoremexpaddzap 10292 Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
Theoremexpmul 10293 Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.)
((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
 
Theoremexpmulzap 10294 Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
 
Theoremm1expeven 10295 Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
(𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
 
Theoremexpsubap 10296 Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
 
Theoremexpp1zap 10297 Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
 
Theoremexpm1ap 10298 Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))
 
Theoremexpdivap 10299 Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))
 
Theoremltexp2a 10300 Ordering relationship for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.)
(((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴𝑀 < 𝑁)) → (𝐴𝑀) < (𝐴𝑁))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13145
  Copyright terms: Public domain < Previous  Next >