HomeHome Intuitionistic Logic Explorer
Theorem List (p. 103 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10201-10300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempeano2fzr 10201 A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.)
((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
 
Theoremfzm 10202* Properties of a finite interval of integers which is inhabited. (Contributed by Jim Kingdon, 15-Apr-2020.)
(∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ𝑀))
 
Theoremfztri3or 10203 Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
 
Theoremfzdcel 10204 Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁))
 
Theoremfznlem 10205 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))
 
Theoremfzn 10206 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ (𝑀...𝑁) = ∅))
 
Theoremfzen 10207 A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
 
Theoremfz1n 10208 A 1-based finite set of sequential integers is empty iff it ends at index 0. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ ℕ0 → ((1...𝑁) = ∅ ↔ 𝑁 = 0))
 
Theorem0fz1 10209 Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (𝐹 = ∅ ↔ 𝑁 = 0))
 
Theoremfz10 10210 There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(1...0) = ∅
 
Theoremuzsubsubfz 10211 Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
((𝐿 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿𝑀)) ∈ (𝑀...𝑁))
 
Theoremuzsubsubfz1 10212 Membership of an integer greater than L decreased by ( L - 1 ) in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
((𝐿 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐿)) → (𝑁 − (𝐿 − 1)) ∈ (1...𝑁))
 
Theoremige3m2fz 10213 Membership of an integer greater than 2 decreased by 2 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
(𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ (1...𝑁))
 
Theoremfzsplit2 10214 Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
(((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
 
Theoremfzsplit 10215 Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.)
(𝐾 ∈ (𝑀...𝑁) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
 
Theoremfzdisj 10216 Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
(𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
 
Theoremfz01en 10217 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.)
(𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁))
 
Theoremelfznn 10218 A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.)
(𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
 
Theoremelfz1end 10219 A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴))
 
Theoremfz1ssnn 10220 A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.)
(1...𝐴) ⊆ ℕ
 
Theoremfznn0sub 10221 Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → (𝑁𝐾) ∈ ℕ0)
 
Theoremfzmmmeqm 10222 Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.)
(𝑀 ∈ (𝐿...𝑁) → ((𝑁𝐿) − (𝑀𝐿)) = (𝑁𝑀))
 
Theoremfzaddel 10223 Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
 
Theoremfzsubel 10224 Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝑀𝐾)...(𝑁𝐾))))
 
Theoremfzopth 10225 A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
 
Theoremfzass4 10226 Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
 
Theoremfzss1 10227 Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
 
Theoremfzss2 10228 Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))
 
Theoremfzssuz 10229 A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.)
(𝑀...𝑁) ⊆ (ℤ𝑀)
 
Theoremfzsn 10230 A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
 
Theoremfzssp1 10231 Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1))
 
Theoremfzssnn 10232 Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.)
(𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ)
 
Theoremfzsuc 10233 Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
 
Theoremfzpred 10234 Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁)))
 
Theoremfzpreddisj 10235 A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
(𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
 
Theoremelfzp1 10236 Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1))))
 
Theoremfzp1ss 10237 Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
 
Theoremfzelp1 10238 Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1)))
 
Theoremfzp1elp1 10239 Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1)))
 
Theoremfznatpl1 10240 Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
 
Theoremfzpr 10241 A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
 
Theoremfztp 10242 A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
(𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
 
Theoremfzsuc2 10243 Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
 
Theoremfzp1disj 10244 (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.)
((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
 
Theoremfzdifsuc 10245 Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
(𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)}))
 
Theoremfzprval 10246* Two ways of defining the first two values of a sequence on . (Contributed by NM, 5-Sep-2011.)
(∀𝑥 ∈ (1...2)(𝐹𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵))
 
Theoremfztpval 10247* Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
(∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
 
Theoremfzrev 10248 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽𝑁)...(𝐽𝑀)) ↔ (𝐽𝐾) ∈ (𝑀...𝑁)))
 
Theoremfzrev2 10249 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀))))
 
Theoremfzrev2i 10250 Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝐽 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽𝐾) ∈ ((𝐽𝑁)...(𝐽𝑀)))
 
Theoremfzrev3 10251 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
(𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)))
 
Theoremfzrev3i 10252 The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
(𝐾 ∈ (𝑀...𝑁) → ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))
 
Theoremfznn 10253 Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.)
(𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))
 
Theoremelfz1b 10254 Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
(𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
 
Theoremelfzm11 10255 Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾 < 𝑁)))
 
Theoremuzsplit 10256 Express an upper integer set as the disjoint (see uzdisj 10257) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
(𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))
 
Theoremuzdisj 10257 The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.)
((𝑀...(𝑁 − 1)) ∩ (ℤ𝑁)) = ∅
 
Theoremfseq1p1m1 10258 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
𝐻 = {⟨(𝑁 + 1), 𝐵⟩}       (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))
 
Theoremfseq1m1p1 10259 Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
𝐻 = {⟨𝑁, 𝐵⟩}       (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
 
Theoremfz1sbc 10260* Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
(𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑[𝑁 / 𝑘]𝜑))
 
Theoremelfzp1b 10261 An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁)))
 
Theoremelfzm1b 10262 An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...𝑁) ↔ (𝐾 − 1) ∈ (0...(𝑁 − 1))))
 
Theoremelfzp12 10263 Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)...𝑁))))
 
Theoremfzm1 10264 Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
 
Theoremfzneuz 10265 No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.)
((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ𝐾))
 
Theoremfznuz 10266 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ‘(𝑁 + 1)))
 
Theoremuznfz 10267 Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.)
(𝐾 ∈ (ℤ𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
 
Theoremfzp1nel 10268 One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
¬ (𝑁 + 1) ∈ (𝑀...𝑁)
 
Theoremfzrevral 10269* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))[(𝐾𝑘) / 𝑗]𝜑))
 
Theoremfzrevral2 10270* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾𝑁)...(𝐾𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾𝑘) / 𝑗]𝜑))
 
Theoremfzrevral3 10271* Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑))
 
Theoremfzshftral 10272* Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
 
Theoremige2m1fz1 10273 Membership of an integer greater than 1 decreased by 1 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
(𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ (1...𝑁))
 
Theoremige2m1fz 10274 Membership in a 0 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.)
((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁))
 
Theoremfz01or 10275 An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
(𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
 
4.5.5  Finite intervals of nonnegative integers

Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0".

 
Theoremelfz2nn0 10276 Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
 
Theoremfznn0 10277 Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.)
(𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝐾𝑁)))
 
Theoremelfznn0 10278 A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
 
Theoremelfz3nn0 10279 The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
 
Theoremfz0ssnn0 10280 Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.)
(0...𝑁) ⊆ ℕ0
 
Theoremfz1ssfz0 10281 Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(1...𝑁) ⊆ (0...𝑁)
 
Theorem0elfz 10282 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.)
(𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
 
Theoremnn0fz0 10283 A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.)
(𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
 
Theoremelfz0add 10284 An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵))))
 
Theoremfz0sn 10285 An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.)
(0...0) = {0}
 
Theoremfz0tp 10286 An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(0...2) = {0, 1, 2}
 
Theoremfz0to3un2pr 10287 An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
(0...3) = ({0, 1} ∪ {2, 3})
 
Theoremfz0to4untppr 10288 An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
(0...4) = ({0, 1, 2} ∪ {3, 4})
 
Theoremelfz0ubfz0 10289 An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))
 
Theoremelfz0fzfz0 10290 A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))
 
Theoremfz0fzelfz0 10291 If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))
 
Theoremfznn0sub2 10292 Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
 
Theoremuzsubfz0 10293 Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
((𝐿 ∈ ℕ0𝑁 ∈ (ℤ𝐿)) → (𝑁𝐿) ∈ (0...𝑁))
 
Theoremfz0fzdiffz0 10294 The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))
 
Theoremelfzmlbm 10295 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
(𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ∈ (0...(𝑁𝑀)))
 
Theoremelfzmlbp 10296 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.)
((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾𝑀) ∈ (0...𝑁))
 
Theoremfzctr 10297 Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.)
(𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
 
Theoremdifelfzle 10298 The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾𝑀) → (𝑀𝐾) ∈ (0...𝑁))
 
Theoremdifelfznle 10299 The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁))
 
Theoremnn0split 10300 Express the set of nonnegative integers as the disjoint (see nn0disj 10302) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.)
(𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ‘(𝑁 + 1))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16363
  Copyright terms: Public domain < Previous  Next >