![]() |
Intuitionistic Logic Explorer Theorem List (p. 103 of 127) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | expcld 10201 | Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | expp1d 10202 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expaddd 10203 | Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expmuld 10204 | Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | sqrecapd 10205 | Square of reciprocal. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑2) = (1 / (𝐴↑2))) | ||
Theorem | expclzapd 10206 | Closure law for integer exponentiation. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | expap0d 10207 | Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) # 0) | ||
Theorem | expnegapd 10208 | Value of a complex number raised to a negative power. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | exprecapd 10209 | Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expp1zapd 10210 | Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expm1apd 10211 | Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) | ||
Theorem | expsubapd 10212 | Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 12-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) | ||
Theorem | sqmuld 10213 | Distribution of square over multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | ||
Theorem | sqdivapd 10214 | Distribution of square over division. (Contributed by Jim Kingdon, 13-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | expdivapd 10215 | Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 13-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) | ||
Theorem | mulexpd 10216 | Positive integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | 0expd 10217 | Value of zero raised to a positive integer power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (0↑𝑁) = 0) | ||
Theorem | reexpcld 10218 | Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | expge0d 10219 | Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑𝑁)) | ||
Theorem | expge1d 10220 | Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 1 ≤ 𝐴) ⇒ ⊢ (𝜑 → 1 ≤ (𝐴↑𝑁)) | ||
Theorem | sqoddm1div8 10221 | A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2)) | ||
Theorem | nnsqcld 10222 | The naturals are closed under squaring. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) | ||
Theorem | nnexpcld 10223 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) | ||
Theorem | nn0expcld 10224 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ0) | ||
Theorem | rpexpcld 10225 | Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ+) | ||
Theorem | reexpclzapd 10226 | Closure of exponentiation of reals. (Contributed by Jim Kingdon, 13-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | resqcld 10227 | Closure of square in reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℝ) | ||
Theorem | sqge0d 10228 | A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴↑2)) | ||
Theorem | sqgt0apd 10229 | The square of a real apart from zero is positive. (Contributed by Jim Kingdon, 13-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → 0 < (𝐴↑2)) | ||
Theorem | leexp2ad 10230 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) ≤ (𝐴↑𝑁)) | ||
Theorem | leexp2rd 10231 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≤ (𝐴↑𝑀)) | ||
Theorem | lt2sqd 10232 | The square function on nonnegative reals is strictly monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sqd 10233 | The square function on nonnegative reals is monotonic. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | sq11d 10234 | The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → (𝐴↑2) = (𝐵↑2)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | sq11ap 10235 | Analogue to sq11 10142 but for apartness. (Contributed by Jim Kingdon, 12-Aug-2021.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) # (𝐵↑2) ↔ 𝐴 # 𝐵)) | ||
Theorem | sq10 10236 | The square of 10 is 100. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ (;10↑2) = ;;100 | ||
Theorem | sq10e99m1 10237 | The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ (;10↑2) = (;99 + 1) | ||
Theorem | 3dec 10238 | A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ;;𝐴𝐵𝐶 = ((((;10↑2) · 𝐴) + (;10 · 𝐵)) + 𝐶) | ||
Theorem | expcanlem 10239 | Lemma for expcan 10240. Proving the order in one direction. (Contributed by Jim Kingdon, 29-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) ⇒ ⊢ (𝜑 → ((𝐴↑𝑀) ≤ (𝐴↑𝑁) → 𝑀 ≤ 𝑁)) | ||
Theorem | expcan 10240 | Cancellation law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) | ||
Theorem | expcand 10241 | Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → (𝐴↑𝑀) = (𝐴↑𝑁)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
Theorem | nn0le2msqd 10242 | The square function on nonnegative integers is monotonic. (Contributed by Jim Kingdon, 31-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵))) | ||
Theorem | nn0opthlem1d 10243 | A rather pretty lemma for nn0opth2 10247. (Contributed by Jim Kingdon, 31-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))) | ||
Theorem | nn0opthlem2d 10244 | Lemma for nn0opth2 10247. (Contributed by Jim Kingdon, 31-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))) | ||
Theorem | nn0opthd 10245 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3475 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | nn0opth2d 10246 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthd 10245. (Contributed by Jim Kingdon, 31-Oct-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | nn0opth2 10247 | An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthd 10245. (Contributed by NM, 22-Jul-2004.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Syntax | cfa 10248 | Extend class notation to include the factorial of nonnegative integers. |
class ! | ||
Definition | df-fac 10249 | Define the factorial function on nonnegative integers. For example, (!‘5) = 120 because 1 · 2 · 3 · 4 · 5 = 120 (ex-fac 12363). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.) |
⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | ||
Theorem | facnn 10250 | Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | ||
Theorem | fac0 10251 | The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (!‘0) = 1 | ||
Theorem | fac1 10252 | The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (!‘1) = 1 | ||
Theorem | facp1 10253 | The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) | ||
Theorem | fac2 10254 | The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
⊢ (!‘2) = 2 | ||
Theorem | fac3 10255 | The factorial of 3. (Contributed by NM, 17-Mar-2005.) |
⊢ (!‘3) = 6 | ||
Theorem | fac4 10256 | The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (!‘4) = ;24 | ||
Theorem | facnn2 10257 | Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.) |
⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | ||
Theorem | faccl 10258 | Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) | ||
Theorem | faccld 10259 | Closure of the factorial function, deduction version of faccl 10258. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (!‘𝑁) ∈ ℕ) | ||
Theorem | facne0 10260 | The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≠ 0) | ||
Theorem | facdiv 10261 | A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) | ||
Theorem | facndiv 10262 | No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.) |
⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) | ||
Theorem | facwordi 10263 | Ordering property of factorial. (Contributed by NM, 9-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (!‘𝑀) ≤ (!‘𝑁)) | ||
Theorem | faclbnd 10264 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd2 10265 | A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.) |
⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) / 2) ≤ (!‘𝑁)) | ||
Theorem | faclbnd3 10266 | A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑𝑁) ≤ ((𝑀↑𝑀) · (!‘𝑁))) | ||
Theorem | faclbnd6 10267 | Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))) | ||
Theorem | facubnd 10268 | An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.) |
⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (𝑁↑𝑁)) | ||
Theorem | facavg 10269 | The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (!‘(⌊‘((𝑀 + 𝑁) / 2))) ≤ ((!‘𝑀) · (!‘𝑁))) | ||
Syntax | cbc 10270 | Extend class notation to include the binomial coefficient operation (combinatorial choose operation). |
class C | ||
Definition | df-bc 10271* |
Define the binomial coefficient operation. For example,
(5C3) = 10 (ex-bc 12364).
In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C". (𝑁C𝐾) is read "𝑁 choose 𝐾." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝑘 ≤ 𝑛 does not hold. (Contributed by NM, 10-Jul-2005.) |
⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) | ||
Theorem | bcval 10272 | Value of the binomial coefficient, 𝑁 choose 𝐾. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when 0 ≤ 𝐾 ≤ 𝑁 does not hold. See bcval2 10273 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = if(𝐾 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))), 0)) | ||
Theorem | bcval2 10273 | Value of the binomial coefficient, 𝑁 choose 𝐾, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) | ||
Theorem | bcval3 10274 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | ||
Theorem | bcval4 10275 | Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) | ||
Theorem | bcrpcl 10276 | Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10291.) (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+) | ||
Theorem | bccmpl 10277 | "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁 − 𝐾))) | ||
Theorem | bcn0 10278 | 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C0) = 1) | ||
Theorem | bc0k 10279 | The binomial coefficient " 0 choose 𝐾 " is 0 for a positive integer K. Note that (0C0) = 1 (see bcn0 10278). (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
⊢ (𝐾 ∈ ℕ → (0C𝐾) = 0) | ||
Theorem | bcnn 10280 | 𝑁 choose 𝑁 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1) | ||
Theorem | bcn1 10281 | Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) | ||
Theorem | bcnp1n 10282 | Binomial coefficient: 𝑁 + 1 choose 𝑁. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C𝑁) = (𝑁 + 1)) | ||
Theorem | bcm1k 10283 | The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾))) | ||
Theorem | bcp1n 10284 | The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)))) | ||
Theorem | bcp1nk 10285 | The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1)))) | ||
Theorem | bcval5 10286 | Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁 − 𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁 − 𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾))) | ||
Theorem | bcn2 10287 | Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2)) | ||
Theorem | bcp1m1 10288 | Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) | ||
Theorem | bcpasc 10289 | Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)) | ||
Theorem | bccl 10290 | A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0) | ||
Theorem | bccl2 10291 | A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) | ||
Theorem | bcn2m1 10292 | Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) | ||
Theorem | bcn2p1 10293 | Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2)) | ||
Theorem | permnn 10294 | The number of permutations of 𝑁 − 𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.) |
⊢ (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ) | ||
Theorem | bcnm1 10295 | The binomial coefficent of (𝑁 − 1) is 𝑁. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁) | ||
Theorem | 4bc3eq4 10296 | The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.) |
⊢ (4C3) = 4 | ||
Theorem | 4bc2eq6 10297 | The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
⊢ (4C2) = 6 | ||
Syntax | chash 10298 | Extend the definition of a class to include the set size function. |
class ♯ | ||
Definition | df-ihash 10299* |
Define the set size function ♯, which gives the
cardinality of a
finite set as a member of ℕ0,
and assigns all infinite sets the
value +∞. For example, (♯‘{0, 1, 2}) = 3.
Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8156). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets). This definition (in terms of ∪ and ≼) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.) |
⊢ ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {〈ω, +∞〉}) ∘ (𝑥 ∈ V ↦ ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝑥})) | ||
Theorem | hashinfuni 10300* | The ordinal size of an infinite set is ω. (Contributed by Jim Kingdon, 20-Feb-2022.) |
⊢ (ω ≼ 𝐴 → ∪ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦 ≼ 𝐴} = ω) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |