ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnanb GIF version

Theorem iseqf1olemnanb 10425
Description: Lemma for seq3f1o 10439. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemnab.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemnab.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
iseqf1olemnab.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemnanb.a (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
iseqf1olemnanb.b (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
Assertion
Ref Expression
iseqf1olemnanb (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemnanb
StepHypRef Expression
1 iseqf1olemnab.eq . . 3 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
2 iseqf1olemqcl.k . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqcl.j . . . . 5 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 iseqf1olemqcl.a . . . . 5 (𝜑𝐴 ∈ (𝑀...𝑁))
5 iseqf1olemnab.q . . . . 5 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
62, 3, 4, 5iseqf1olemqval 10422 . . . 4 (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
7 iseqf1olemnanb.a . . . . 5 (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
87iffalsed 3530 . . . 4 (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) = (𝐽𝐴))
96, 8eqtrd 2198 . . 3 (𝜑 → (𝑄𝐴) = (𝐽𝐴))
10 iseqf1olemnab.b . . . . 5 (𝜑𝐵 ∈ (𝑀...𝑁))
112, 3, 10, 5iseqf1olemqval 10422 . . . 4 (𝜑 → (𝑄𝐵) = if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)))
12 iseqf1olemnanb.b . . . . 5 (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
1312iffalsed 3530 . . . 4 (𝜑 → if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)) = (𝐽𝐵))
1411, 13eqtrd 2198 . . 3 (𝜑 → (𝑄𝐵) = (𝐽𝐵))
151, 9, 143eqtr3d 2206 . 2 (𝜑 → (𝐽𝐴) = (𝐽𝐵))
16 f1of1 5431 . . . 4 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
173, 16syl 14 . . 3 (𝜑𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
18 f1veqaeq 5737 . . 3 ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁))) → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
1917, 4, 10, 18syl12anc 1226 . 2 (𝜑 → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
2015, 19mpd 13 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  ifcif 3520  cmpt 4043  ccnv 4603  1-1wf1 5185  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  1c1 7754  cmin 8069  ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  iseqf1olemmo  10427
  Copyright terms: Public domain W3C validator