Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnanb GIF version

Theorem iseqf1olemnanb 10270
 Description: Lemma for seq3f1o 10284. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemnab.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemnab.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
iseqf1olemnab.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemnanb.a (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
iseqf1olemnanb.b (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
Assertion
Ref Expression
iseqf1olemnanb (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemnanb
StepHypRef Expression
1 iseqf1olemnab.eq . . 3 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
2 iseqf1olemqcl.k . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqcl.j . . . . 5 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 iseqf1olemqcl.a . . . . 5 (𝜑𝐴 ∈ (𝑀...𝑁))
5 iseqf1olemnab.q . . . . 5 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
62, 3, 4, 5iseqf1olemqval 10267 . . . 4 (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
7 iseqf1olemnanb.a . . . . 5 (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
87iffalsed 3484 . . . 4 (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) = (𝐽𝐴))
96, 8eqtrd 2172 . . 3 (𝜑 → (𝑄𝐴) = (𝐽𝐴))
10 iseqf1olemnab.b . . . . 5 (𝜑𝐵 ∈ (𝑀...𝑁))
112, 3, 10, 5iseqf1olemqval 10267 . . . 4 (𝜑 → (𝑄𝐵) = if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)))
12 iseqf1olemnanb.b . . . . 5 (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
1312iffalsed 3484 . . . 4 (𝜑 → if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)) = (𝐽𝐵))
1411, 13eqtrd 2172 . . 3 (𝜑 → (𝑄𝐵) = (𝐽𝐵))
151, 9, 143eqtr3d 2180 . 2 (𝜑 → (𝐽𝐴) = (𝐽𝐵))
16 f1of1 5366 . . . 4 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
173, 16syl 14 . . 3 (𝜑𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
18 f1veqaeq 5670 . . 3 ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁))) → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
1917, 4, 10, 18syl12anc 1214 . 2 (𝜑 → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
2015, 19mpd 13 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1331   ∈ wcel 1480  ifcif 3474   ↦ cmpt 3989  ◡ccnv 4538  –1-1→wf1 5120  –1-1-onto→wf1o 5122  ‘cfv 5123  (class class class)co 5774  1c1 7628   − cmin 7940  ...cfz 9797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-fz 9798 This theorem is referenced by:  iseqf1olemmo  10272
 Copyright terms: Public domain W3C validator