Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemnanb | GIF version |
Description: Lemma for seq3f1o 10439. (Contributed by Jim Kingdon, 27-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqcl.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
iseqf1olemnab.b | ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
iseqf1olemnab.eq | ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
iseqf1olemnab.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
iseqf1olemnanb.a | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
iseqf1olemnanb.b | ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
Ref | Expression |
---|---|
iseqf1olemnanb | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemnab.eq | . . 3 ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) | |
2 | iseqf1olemqcl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
3 | iseqf1olemqcl.j | . . . . 5 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
4 | iseqf1olemqcl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | |
5 | iseqf1olemnab.q | . . . . 5 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
6 | 2, 3, 4, 5 | iseqf1olemqval 10422 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
7 | iseqf1olemnanb.a | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | |
8 | 7 | iffalsed 3530 | . . . 4 ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) = (𝐽‘𝐴)) |
9 | 6, 8 | eqtrd 2198 | . . 3 ⊢ (𝜑 → (𝑄‘𝐴) = (𝐽‘𝐴)) |
10 | iseqf1olemnab.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) | |
11 | 2, 3, 10, 5 | iseqf1olemqval 10422 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
12 | iseqf1olemnanb.b | . . . . 5 ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | |
13 | 12 | iffalsed 3530 | . . . 4 ⊢ (𝜑 → if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵)) = (𝐽‘𝐵)) |
14 | 11, 13 | eqtrd 2198 | . . 3 ⊢ (𝜑 → (𝑄‘𝐵) = (𝐽‘𝐵)) |
15 | 1, 9, 14 | 3eqtr3d 2206 | . 2 ⊢ (𝜑 → (𝐽‘𝐴) = (𝐽‘𝐵)) |
16 | f1of1 5431 | . . . 4 ⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) | |
17 | 3, 16 | syl 14 | . . 3 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
18 | f1veqaeq 5737 | . . 3 ⊢ ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁))) → ((𝐽‘𝐴) = (𝐽‘𝐵) → 𝐴 = 𝐵)) | |
19 | 17, 4, 10, 18 | syl12anc 1226 | . 2 ⊢ (𝜑 → ((𝐽‘𝐴) = (𝐽‘𝐵) → 𝐴 = 𝐵)) |
20 | 15, 19 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1343 ∈ wcel 2136 ifcif 3520 ↦ cmpt 4043 ◡ccnv 4603 –1-1→wf1 5185 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 1c1 7754 − cmin 8069 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: iseqf1olemmo 10427 |
Copyright terms: Public domain | W3C validator |