Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iseqf1olemnanb | GIF version |
Description: Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 27-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqcl.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
iseqf1olemnab.b | ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
iseqf1olemnab.eq | ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
iseqf1olemnab.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
iseqf1olemnanb.a | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
iseqf1olemnanb.b | ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
Ref | Expression |
---|---|
iseqf1olemnanb | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemnab.eq | . . 3 ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) | |
2 | iseqf1olemqcl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
3 | iseqf1olemqcl.j | . . . . 5 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
4 | iseqf1olemqcl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | |
5 | iseqf1olemnab.q | . . . . 5 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
6 | 2, 3, 4, 5 | iseqf1olemqval 10443 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
7 | iseqf1olemnanb.a | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | |
8 | 7 | iffalsed 3536 | . . . 4 ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) = (𝐽‘𝐴)) |
9 | 6, 8 | eqtrd 2203 | . . 3 ⊢ (𝜑 → (𝑄‘𝐴) = (𝐽‘𝐴)) |
10 | iseqf1olemnab.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) | |
11 | 2, 3, 10, 5 | iseqf1olemqval 10443 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
12 | iseqf1olemnanb.b | . . . . 5 ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | |
13 | 12 | iffalsed 3536 | . . . 4 ⊢ (𝜑 → if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵)) = (𝐽‘𝐵)) |
14 | 11, 13 | eqtrd 2203 | . . 3 ⊢ (𝜑 → (𝑄‘𝐵) = (𝐽‘𝐵)) |
15 | 1, 9, 14 | 3eqtr3d 2211 | . 2 ⊢ (𝜑 → (𝐽‘𝐴) = (𝐽‘𝐵)) |
16 | f1of1 5441 | . . . 4 ⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) | |
17 | 3, 16 | syl 14 | . . 3 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
18 | f1veqaeq 5748 | . . 3 ⊢ ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁))) → ((𝐽‘𝐴) = (𝐽‘𝐵) → 𝐴 = 𝐵)) | |
19 | 17, 4, 10, 18 | syl12anc 1231 | . 2 ⊢ (𝜑 → ((𝐽‘𝐴) = (𝐽‘𝐵) → 𝐴 = 𝐵)) |
20 | 15, 19 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ∈ wcel 2141 ifcif 3526 ↦ cmpt 4050 ◡ccnv 4610 –1-1→wf1 5195 –1-1-onto→wf1o 5197 ‘cfv 5198 (class class class)co 5853 1c1 7775 − cmin 8090 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: iseqf1olemmo 10448 |
Copyright terms: Public domain | W3C validator |