ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemnanb GIF version

Theorem iseqf1olemnanb 10529
Description: Lemma for seq3f1o 10543. (Contributed by Jim Kingdon, 27-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqcl.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqcl.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqcl.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemnab.b (𝜑𝐵 ∈ (𝑀...𝑁))
iseqf1olemnab.eq (𝜑 → (𝑄𝐴) = (𝑄𝐵))
iseqf1olemnab.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemnanb.a (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
iseqf1olemnanb.b (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
Assertion
Ref Expression
iseqf1olemnanb (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐽   𝑢,𝐾   𝑢,𝑀   𝑢,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝑄(𝑢)

Proof of Theorem iseqf1olemnanb
StepHypRef Expression
1 iseqf1olemnab.eq . . 3 (𝜑 → (𝑄𝐴) = (𝑄𝐵))
2 iseqf1olemqcl.k . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
3 iseqf1olemqcl.j . . . . 5 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 iseqf1olemqcl.a . . . . 5 (𝜑𝐴 ∈ (𝑀...𝑁))
5 iseqf1olemnab.q . . . . 5 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
62, 3, 4, 5iseqf1olemqval 10526 . . . 4 (𝜑 → (𝑄𝐴) = if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)))
7 iseqf1olemnanb.a . . . . 5 (𝜑 → ¬ 𝐴 ∈ (𝐾...(𝐽𝐾)))
87iffalsed 3559 . . . 4 (𝜑 → if(𝐴 ∈ (𝐾...(𝐽𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽𝐴)) = (𝐽𝐴))
96, 8eqtrd 2222 . . 3 (𝜑 → (𝑄𝐴) = (𝐽𝐴))
10 iseqf1olemnab.b . . . . 5 (𝜑𝐵 ∈ (𝑀...𝑁))
112, 3, 10, 5iseqf1olemqval 10526 . . . 4 (𝜑 → (𝑄𝐵) = if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)))
12 iseqf1olemnanb.b . . . . 5 (𝜑 → ¬ 𝐵 ∈ (𝐾...(𝐽𝐾)))
1312iffalsed 3559 . . . 4 (𝜑 → if(𝐵 ∈ (𝐾...(𝐽𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽𝐵)) = (𝐽𝐵))
1411, 13eqtrd 2222 . . 3 (𝜑 → (𝑄𝐵) = (𝐽𝐵))
151, 9, 143eqtr3d 2230 . 2 (𝜑 → (𝐽𝐴) = (𝐽𝐵))
16 f1of1 5482 . . . 4 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
173, 16syl 14 . . 3 (𝜑𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁))
18 f1veqaeq 5794 . . 3 ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁))) → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
1917, 4, 10, 18syl12anc 1247 . 2 (𝜑 → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
2015, 19mpd 13 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2160  ifcif 3549  cmpt 4082  ccnv 4646  1-1wf1 5235  1-1-ontowf1o 5237  cfv 5238  (class class class)co 5900  1c1 7847  cmin 8163  ...cfz 10044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-inn 8955  df-n0 9212  df-z 9289  df-uz 9564  df-fz 10045
This theorem is referenced by:  iseqf1olemmo  10531
  Copyright terms: Public domain W3C validator