![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqf1olemnanb | GIF version |
Description: Lemma for seq3f1o 10506. (Contributed by Jim Kingdon, 27-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1olemqcl.k | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
iseqf1olemqcl.j | ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
iseqf1olemqcl.a | ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
iseqf1olemnab.b | ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) |
iseqf1olemnab.eq | ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) |
iseqf1olemnab.q | ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
iseqf1olemnanb.a | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) |
iseqf1olemnanb.b | ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) |
Ref | Expression |
---|---|
iseqf1olemnanb | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1olemnab.eq | . . 3 ⊢ (𝜑 → (𝑄‘𝐴) = (𝑄‘𝐵)) | |
2 | iseqf1olemqcl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
3 | iseqf1olemqcl.j | . . . . 5 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) | |
4 | iseqf1olemqcl.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) | |
5 | iseqf1olemnab.q | . . . . 5 ⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) | |
6 | 2, 3, 4, 5 | iseqf1olemqval 10489 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐴) = if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴))) |
7 | iseqf1olemnanb.a | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐾...(◡𝐽‘𝐾))) | |
8 | 7 | iffalsed 3546 | . . . 4 ⊢ (𝜑 → if(𝐴 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐴 = 𝐾, 𝐾, (𝐽‘(𝐴 − 1))), (𝐽‘𝐴)) = (𝐽‘𝐴)) |
9 | 6, 8 | eqtrd 2210 | . . 3 ⊢ (𝜑 → (𝑄‘𝐴) = (𝐽‘𝐴)) |
10 | iseqf1olemnab.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑀...𝑁)) | |
11 | 2, 3, 10, 5 | iseqf1olemqval 10489 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐵) = if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵))) |
12 | iseqf1olemnanb.b | . . . . 5 ⊢ (𝜑 → ¬ 𝐵 ∈ (𝐾...(◡𝐽‘𝐾))) | |
13 | 12 | iffalsed 3546 | . . . 4 ⊢ (𝜑 → if(𝐵 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝐵 = 𝐾, 𝐾, (𝐽‘(𝐵 − 1))), (𝐽‘𝐵)) = (𝐽‘𝐵)) |
14 | 11, 13 | eqtrd 2210 | . . 3 ⊢ (𝜑 → (𝑄‘𝐵) = (𝐽‘𝐵)) |
15 | 1, 9, 14 | 3eqtr3d 2218 | . 2 ⊢ (𝜑 → (𝐽‘𝐴) = (𝐽‘𝐵)) |
16 | f1of1 5462 | . . . 4 ⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) | |
17 | 3, 16 | syl 14 | . . 3 ⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁)) |
18 | f1veqaeq 5772 | . . 3 ⊢ ((𝐽:(𝑀...𝑁)–1-1→(𝑀...𝑁) ∧ (𝐴 ∈ (𝑀...𝑁) ∧ 𝐵 ∈ (𝑀...𝑁))) → ((𝐽‘𝐴) = (𝐽‘𝐵) → 𝐴 = 𝐵)) | |
19 | 17, 4, 10, 18 | syl12anc 1236 | . 2 ⊢ (𝜑 → ((𝐽‘𝐴) = (𝐽‘𝐵) → 𝐴 = 𝐵)) |
20 | 15, 19 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∈ wcel 2148 ifcif 3536 ↦ cmpt 4066 ◡ccnv 4627 –1-1→wf1 5215 –1-1-onto→wf1o 5217 ‘cfv 5218 (class class class)co 5877 1c1 7814 − cmin 8130 ...cfz 10010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 |
This theorem is referenced by: iseqf1olemmo 10494 |
Copyright terms: Public domain | W3C validator |