Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simprlr | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprlr | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antrl 482 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: imain 5270 fcof1 5751 fliftfun 5764 sbthlemi6 6927 sbthlemi8 6929 addcmpblnq 7308 mulcmpblnq 7309 ordpipqqs 7315 enq0tr 7375 addcmpblnq0 7384 mulcmpblnq0 7385 nnnq0lem1 7387 addnq0mo 7388 mulnq0mo 7389 prarloclemcalc 7443 addlocpr 7477 distrlem4prl 7525 distrlem4pru 7526 addcmpblnr 7680 mulcmpblnrlemg 7681 mulcmpblnr 7682 prsrlem1 7683 addsrmo 7684 mulsrmo 7685 ltsrprg 7688 apreap 8485 apreim 8501 divdivdivap 8609 divsubdivap 8624 ledivdiv 8785 lediv12a 8789 exbtwnz 10186 seq3caopr 10418 leexp2r 10509 zfz1iso 10754 recvguniq 10937 rsqrmo 10969 summodclem2 11323 prodmodclem2 11518 prodmodc 11519 qredeu 12029 pw2dvdseu 12100 pcadd 12271 epttop 12740 txdis1cn 12928 metequiv2 13146 cncfmptc 13232 cncfmptid 13233 addccncf 13236 negcncf 13238 dedekindicclemicc 13260 2sqlem5 13605 2sqlem9 13610 |
Copyright terms: Public domain | W3C validator |