ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgrcl GIF version

Theorem frecuzrdgrcl 10627
Description: The function 𝑅 (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 1-Apr-2022.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
Assertion
Ref Expression
frecuzrdgrcl (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdgrcl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 6319 . . . . . . 7 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
21adantl 277 . . . . . 6 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
32fveq2d 5630 . . . . 5 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩))
4 df-ov 6003 . . . . . . 7 ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩)
5 xp1st 6309 . . . . . . . . 9 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (1st𝑧) ∈ (ℤ𝐶))
65adantl 277 . . . . . . . 8 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (1st𝑧) ∈ (ℤ𝐶))
7 xp2nd 6310 . . . . . . . . 9 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (2nd𝑧) ∈ 𝑆)
87adantl 277 . . . . . . . 8 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑆)
9 peano2uz 9774 . . . . . . . . . 10 ((1st𝑧) ∈ (ℤ𝐶) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
106, 9syl 14 . . . . . . . . 9 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
11 frecuzrdgrrn.f . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
1211ralrimivva 2612 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
1312adantr 276 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
14 oveq1 6007 . . . . . . . . . . . . 13 (𝑥 = (1st𝑧) → (𝑥𝐹𝑦) = ((1st𝑧)𝐹𝑦))
1514eleq1d 2298 . . . . . . . . . . . 12 (𝑥 = (1st𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹𝑦) ∈ 𝑆))
16 oveq2 6008 . . . . . . . . . . . . 13 (𝑦 = (2nd𝑧) → ((1st𝑧)𝐹𝑦) = ((1st𝑧)𝐹(2nd𝑧)))
1716eleq1d 2298 . . . . . . . . . . . 12 (𝑦 = (2nd𝑧) → (((1st𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
1815, 17rspc2v 2920 . . . . . . . . . . 11 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑆) → (∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
196, 8, 18syl2anc 411 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
2013, 19mpd 13 . . . . . . . . 9 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆)
21 opelxp 4748 . . . . . . . . 9 (⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (((1st𝑧) + 1) ∈ (ℤ𝐶) ∧ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
2210, 20, 21sylanbrc 417 . . . . . . . 8 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
23 oveq1 6007 . . . . . . . . . 10 (𝑥 = (1st𝑧) → (𝑥 + 1) = ((1st𝑧) + 1))
2423, 14opeq12d 3864 . . . . . . . . 9 (𝑥 = (1st𝑧) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩)
2516opeq2d 3863 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
26 eqid 2229 . . . . . . . . 9 (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)
2724, 25, 26ovmpog 6138 . . . . . . . 8 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑆 ∧ ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
286, 8, 22, 27syl3anc 1271 . . . . . . 7 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
294, 28eqtr3id 2276 . . . . . 6 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
3029, 22eqeltrd 2306 . . . . 5 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) ∈ ((ℤ𝐶) × 𝑆))
313, 30eqeltrd 2306 . . . 4 ((𝜑𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
3231ralrimiva 2603 . . 3 (𝜑 → ∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
33 frec2uz.1 . . . . 5 (𝜑𝐶 ∈ ℤ)
34 uzid 9732 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
3533, 34syl 14 . . . 4 (𝜑𝐶 ∈ (ℤ𝐶))
36 frecuzrdgrrn.a . . . 4 (𝜑𝐴𝑆)
37 opelxp 4748 . . . 4 (⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ↔ (𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆))
3835, 36, 37sylanbrc 417 . . 3 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
39 frecfcl 6549 . . 3 ((∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆) ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆)) → frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩):ω⟶((ℤ𝐶) × 𝑆))
4032, 38, 39syl2anc 411 . 2 (𝜑 → frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩):ω⟶((ℤ𝐶) × 𝑆))
41 frecuzrdgrrn.2 . . 3 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
4241feq1i 5465 . 2 (𝑅:ω⟶((ℤ𝐶) × 𝑆) ↔ frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩):ω⟶((ℤ𝐶) × 𝑆))
4340, 42sylibr 134 1 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  cop 3669  cmpt 4144  ωcom 4681   × cxp 4716  wf 5313  cfv 5317  (class class class)co 6000  cmpo 6002  1st c1st 6282  2nd c2nd 6283  freccfrec 6534  1c1 7996   + caddc 7998  cz 9442  cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719
This theorem is referenced by:  frecuzrdglem  10628  frecuzrdgtcl  10629  frecuzrdg0  10630
  Copyright terms: Public domain W3C validator