ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrf GIF version

Theorem algrf 11986
Description: An algorithm is a step function 𝐹:𝑆𝑆 on a state space 𝑆. An algorithm acts on an initial state 𝐴𝑆 by iteratively applying 𝐹 to give 𝐴, (𝐹𝐴), (𝐹‘(𝐹𝐴)) and so on. An algorithm is said to halt if a fixed point of 𝐹 is reached after a finite number of iterations.

The algorithm iterator 𝑅:ℕ0𝑆 "runs" the algorithm 𝐹 so that (𝑅𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴.

Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrf (𝜑𝑅:𝑍𝑆)

Proof of Theorem algrf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.1 . . 3 𝑍 = (ℤ𝑀)
2 algrf.3 . . 3 (𝜑𝑀 ∈ ℤ)
3 algrf.4 . . . . 5 (𝜑𝐴𝑆)
4 fvconst2g 5707 . . . . 5 ((𝐴𝑆𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
53, 4sylan 281 . . . 4 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
63adantr 274 . . . 4 ((𝜑𝑥𝑍) → 𝐴𝑆)
75, 6eqeltrd 2247 . . 3 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
8 vex 2733 . . . . 5 𝑥 ∈ V
9 vex 2733 . . . . 5 𝑦 ∈ V
108, 9algrflem 6205 . . . 4 (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹𝑥)
11 algrf.5 . . . . 5 (𝜑𝐹:𝑆𝑆)
12 simpl 108 . . . . 5 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
13 ffvelrn 5626 . . . . 5 ((𝐹:𝑆𝑆𝑥𝑆) → (𝐹𝑥) ∈ 𝑆)
1411, 12, 13syl2an 287 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐹𝑥) ∈ 𝑆)
1510, 14eqeltrid 2257 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
161, 2, 7, 15seqf 10404 . 2 (𝜑 → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
17 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
1817feq1i 5338 . 2 (𝑅:𝑍𝑆 ↔ seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
1916, 18sylibr 133 1 (𝜑𝑅:𝑍𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {csn 3581   × cxp 4607  ccom 4613  wf 5192  cfv 5196  (class class class)co 5850  1st c1st 6114  cz 9199  cuz 9474  seqcseq 10388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-seqfrec 10389
This theorem is referenced by:  algrp1  11987  alginv  11988  algcvg  11989  algcvga  11992  algfx  11993  eucalgcvga  11999  eucalg  12000
  Copyright terms: Public domain W3C validator