| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrf | GIF version | ||
| Description: An algorithm is a step
function 𝐹:𝑆⟶𝑆 on a state space 𝑆.
An algorithm acts on an initial state 𝐴 ∈ 𝑆 by iteratively applying
𝐹 to give 𝐴, (𝐹‘𝐴), (𝐹‘(𝐹‘𝐴)) and so
on. An algorithm is said to halt if a fixed point of 𝐹 is
reached
after a finite number of iterations.
The algorithm iterator 𝑅:ℕ0⟶𝑆 "runs" the algorithm 𝐹 so that (𝑅‘𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴. Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
| algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| algrf | ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | algrf.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | algrf.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | fvconst2g 5808 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) | |
| 5 | 3, 4 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) |
| 6 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
| 7 | 5, 6 | eqeltrd 2283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| 8 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 9 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | 8, 9 | algrflem 6325 | . . . 4 ⊢ (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹‘𝑥) |
| 11 | algrf.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 12 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 13 | ffvelcdm 5723 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑥 ∈ 𝑆) → (𝐹‘𝑥) ∈ 𝑆) | |
| 14 | 11, 12, 13 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐹‘𝑥) ∈ 𝑆) |
| 15 | 10, 14 | eqeltrid 2293 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| 16 | 1, 2, 7, 15 | seqf 10622 | . 2 ⊢ (𝜑 → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍⟶𝑆) |
| 17 | algrf.2 | . . 3 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
| 18 | 17 | feq1i 5425 | . 2 ⊢ (𝑅:𝑍⟶𝑆 ↔ seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍⟶𝑆) |
| 19 | 16, 18 | sylibr 134 | 1 ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {csn 3635 × cxp 4678 ∘ ccom 4684 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 1st c1st 6234 ℤcz 9385 ℤ≥cuz 9661 seqcseq 10605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-n0 9309 df-z 9386 df-uz 9662 df-seqfrec 10606 |
| This theorem is referenced by: algrp1 12418 alginv 12419 algcvg 12420 algcvga 12423 algfx 12424 eucalgcvga 12430 eucalg 12431 |
| Copyright terms: Public domain | W3C validator |