![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > algrf | GIF version |
Description: An algorithm is a step
function 𝐹:𝑆⟶𝑆 on a state space 𝑆.
An algorithm acts on an initial state 𝐴 ∈ 𝑆 by iteratively applying
𝐹 to give 𝐴, (𝐹‘𝐴), (𝐹‘(𝐹‘𝐴)) and so
on. An algorithm is said to halt if a fixed point of 𝐹 is
reached
after a finite number of iterations.
The algorithm iterator 𝑅:ℕ0⟶𝑆 "runs" the algorithm 𝐹 so that (𝑅‘𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴. Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
Ref | Expression |
---|---|
algrf | ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algrf.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | algrf.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | algrf.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | fvconst2g 5731 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) | |
5 | 3, 4 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) |
6 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
7 | 5, 6 | eqeltrd 2254 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
8 | vex 2741 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | vex 2741 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | algrflem 6230 | . . . 4 ⊢ (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹‘𝑥) |
11 | algrf.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
12 | simpl 109 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
13 | ffvelcdm 5650 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑥 ∈ 𝑆) → (𝐹‘𝑥) ∈ 𝑆) | |
14 | 11, 12, 13 | syl2an 289 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐹‘𝑥) ∈ 𝑆) |
15 | 10, 14 | eqeltrid 2264 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
16 | 1, 2, 7, 15 | seqf 10461 | . 2 ⊢ (𝜑 → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍⟶𝑆) |
17 | algrf.2 | . . 3 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
18 | 17 | feq1i 5359 | . 2 ⊢ (𝑅:𝑍⟶𝑆 ↔ seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍⟶𝑆) |
19 | 16, 18 | sylibr 134 | 1 ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {csn 3593 × cxp 4625 ∘ ccom 4631 ⟶wf 5213 ‘cfv 5217 (class class class)co 5875 1st c1st 6139 ℤcz 9253 ℤ≥cuz 9528 seqcseq 10445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-uz 9529 df-seqfrec 10446 |
This theorem is referenced by: algrp1 12046 alginv 12047 algcvg 12048 algcvga 12051 algfx 12052 eucalgcvga 12058 eucalg 12059 |
Copyright terms: Public domain | W3C validator |