ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrf GIF version

Theorem algrf 12417
Description: An algorithm is a step function 𝐹:𝑆𝑆 on a state space 𝑆. An algorithm acts on an initial state 𝐴𝑆 by iteratively applying 𝐹 to give 𝐴, (𝐹𝐴), (𝐹‘(𝐹𝐴)) and so on. An algorithm is said to halt if a fixed point of 𝐹 is reached after a finite number of iterations.

The algorithm iterator 𝑅:ℕ0𝑆 "runs" the algorithm 𝐹 so that (𝑅𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴.

Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrf (𝜑𝑅:𝑍𝑆)

Proof of Theorem algrf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.1 . . 3 𝑍 = (ℤ𝑀)
2 algrf.3 . . 3 (𝜑𝑀 ∈ ℤ)
3 algrf.4 . . . . 5 (𝜑𝐴𝑆)
4 fvconst2g 5808 . . . . 5 ((𝐴𝑆𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
53, 4sylan 283 . . . 4 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
63adantr 276 . . . 4 ((𝜑𝑥𝑍) → 𝐴𝑆)
75, 6eqeltrd 2283 . . 3 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
8 vex 2776 . . . . 5 𝑥 ∈ V
9 vex 2776 . . . . 5 𝑦 ∈ V
108, 9algrflem 6325 . . . 4 (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹𝑥)
11 algrf.5 . . . . 5 (𝜑𝐹:𝑆𝑆)
12 simpl 109 . . . . 5 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
13 ffvelcdm 5723 . . . . 5 ((𝐹:𝑆𝑆𝑥𝑆) → (𝐹𝑥) ∈ 𝑆)
1411, 12, 13syl2an 289 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐹𝑥) ∈ 𝑆)
1510, 14eqeltrid 2293 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
161, 2, 7, 15seqf 10622 . 2 (𝜑 → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
17 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
1817feq1i 5425 . 2 (𝑅:𝑍𝑆 ↔ seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
1916, 18sylibr 134 1 (𝜑𝑅:𝑍𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {csn 3635   × cxp 4678  ccom 4684  wf 5273  cfv 5277  (class class class)co 5954  1st c1st 6234  cz 9385  cuz 9661  seqcseq 10605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-seqfrec 10606
This theorem is referenced by:  algrp1  12418  alginv  12419  algcvg  12420  algcvga  12423  algfx  12424  eucalgcvga  12430  eucalg  12431
  Copyright terms: Public domain W3C validator