![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfdclemf | GIF version |
Description: Lemma for nninfdc 12454. A function from the natural numbers into 𝐴. (Contributed by Jim Kingdon, 23-Sep-2024.) |
Ref | Expression |
---|---|
nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
Ref | Expression |
---|---|
nninfdclemf | ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9563 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 9280 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
3 | eqid 2177 | . . . . 5 ⊢ (𝑖 ∈ ℕ ↦ 𝐽) = (𝑖 ∈ ℕ ↦ 𝐽) | |
4 | eqidd 2178 | . . . . 5 ⊢ (𝑖 = 𝑝 → 𝐽 = 𝐽) | |
5 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℕ) | |
6 | nninfdclemf.j | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
7 | 6 | simpld 112 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝐽 ∈ 𝐴) |
9 | 3, 4, 5, 8 | fvmptd3 5610 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) = 𝐽) |
10 | 9, 8 | eqeltrd 2254 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) ∈ 𝐴) |
11 | nninfdclemf.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
12 | 11 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐴 ⊆ ℕ) |
13 | nninfdclemf.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
15 | nninfdclemf.nb | . . . . 5 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
17 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ 𝐴) | |
18 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐴) | |
19 | 12, 14, 16, 17, 18 | nninfdclemcl 12449 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑞) ∈ 𝐴) |
20 | 1, 2, 10, 19 | seqf 10461 | . 2 ⊢ (𝜑 → seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)):ℕ⟶𝐴) |
21 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
22 | 21 | feq1i 5359 | . 2 ⊢ (𝐹:ℕ⟶𝐴 ↔ seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)):ℕ⟶𝐴) |
23 | 20, 22 | sylibr 134 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ∩ cin 3129 ⊆ wss 3130 class class class wbr 4004 ↦ cmpt 4065 ⟶wf 5213 ‘cfv 5217 (class class class)co 5875 ∈ cmpo 5877 infcinf 6982 ℝcr 7810 1c1 7812 + caddc 7814 < clt 7992 ℕcn 8919 ℤ≥cuz 9528 seqcseq 10445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-isom 5226 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-sup 6983 df-inf 6984 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-uz 9529 df-fz 10009 df-fzo 10143 df-seqfrec 10446 |
This theorem is referenced by: nninfdclemp1 12451 nninfdclemlt 12452 nninfdclemf1 12453 |
Copyright terms: Public domain | W3C validator |