| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdclemf | GIF version | ||
| Description: Lemma for nninfdc 12909. A function from the natural numbers into 𝐴. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
| nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
| Ref | Expression |
|---|---|
| nninfdclemf | ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9714 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 9429 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | eqid 2206 | . . . . 5 ⊢ (𝑖 ∈ ℕ ↦ 𝐽) = (𝑖 ∈ ℕ ↦ 𝐽) | |
| 4 | eqidd 2207 | . . . . 5 ⊢ (𝑖 = 𝑝 → 𝐽 = 𝐽) | |
| 5 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℕ) | |
| 6 | nninfdclemf.j | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
| 7 | 6 | simpld 112 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| 8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝐽 ∈ 𝐴) |
| 9 | 3, 4, 5, 8 | fvmptd3 5691 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) = 𝐽) |
| 10 | 9, 8 | eqeltrd 2283 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) ∈ 𝐴) |
| 11 | nninfdclemf.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 12 | 11 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐴 ⊆ ℕ) |
| 13 | nninfdclemf.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| 15 | nninfdclemf.nb | . . . . 5 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
| 16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| 17 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ 𝐴) | |
| 18 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐴) | |
| 19 | 12, 14, 16, 17, 18 | nninfdclemcl 12904 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑞) ∈ 𝐴) |
| 20 | 1, 2, 10, 19 | seqf 10641 | . 2 ⊢ (𝜑 → seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)):ℕ⟶𝐴) |
| 21 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
| 22 | 21 | feq1i 5433 | . 2 ⊢ (𝐹:ℕ⟶𝐴 ↔ seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)):ℕ⟶𝐴) |
| 23 | 20, 22 | sylibr 134 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∩ cin 3169 ⊆ wss 3170 class class class wbr 4054 ↦ cmpt 4116 ⟶wf 5281 ‘cfv 5285 (class class class)co 5962 ∈ cmpo 5964 infcinf 7106 ℝcr 7954 1c1 7956 + caddc 7958 < clt 8137 ℕcn 9066 ℤ≥cuz 9678 seqcseq 10624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-fzo 10295 df-seqfrec 10625 |
| This theorem is referenced by: nninfdclemp1 12906 nninfdclemlt 12907 nninfdclemf1 12908 |
| Copyright terms: Public domain | W3C validator |