| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdclemf | GIF version | ||
| Description: Lemma for nninfdc 13019. A function from the natural numbers into 𝐴. (Contributed by Jim Kingdon, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdclemf.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| nninfdclemf.dc | ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| nninfdclemf.nb | ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| nninfdclemf.j | ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
| nninfdclemf.f | ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
| Ref | Expression |
|---|---|
| nninfdclemf | ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9754 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 9469 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 3 | eqid 2229 | . . . . 5 ⊢ (𝑖 ∈ ℕ ↦ 𝐽) = (𝑖 ∈ ℕ ↦ 𝐽) | |
| 4 | eqidd 2230 | . . . . 5 ⊢ (𝑖 = 𝑝 → 𝐽 = 𝐽) | |
| 5 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℕ) | |
| 6 | nninfdclemf.j | . . . . . . 7 ⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | |
| 7 | 6 | simpld 112 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| 8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝐽 ∈ 𝐴) |
| 9 | 3, 4, 5, 8 | fvmptd3 5727 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) = 𝐽) |
| 10 | 9, 8 | eqeltrd 2306 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ 𝐽)‘𝑝) ∈ 𝐴) |
| 11 | nninfdclemf.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 12 | 11 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐴 ⊆ ℕ) |
| 13 | nninfdclemf.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
| 15 | nninfdclemf.nb | . . . . 5 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | |
| 16 | 15 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
| 17 | simprl 529 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ 𝐴) | |
| 18 | simprr 531 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐴) | |
| 19 | 12, 14, 16, 17, 18 | nninfdclemcl 13014 | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < ))𝑞) ∈ 𝐴) |
| 20 | 1, 2, 10, 19 | seqf 10681 | . 2 ⊢ (𝜑 → seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)):ℕ⟶𝐴) |
| 21 | nninfdclemf.f | . . 3 ⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | |
| 22 | 21 | feq1i 5465 | . 2 ⊢ (𝐹:ℕ⟶𝐴 ↔ seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)):ℕ⟶𝐴) |
| 23 | 20, 22 | sylibr 134 | 1 ⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ∩ cin 3196 ⊆ wss 3197 class class class wbr 4082 ↦ cmpt 4144 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 ∈ cmpo 6002 infcinf 7146 ℝcr 7994 1c1 7996 + caddc 7998 < clt 8177 ℕcn 9106 ℤ≥cuz 9718 seqcseq 10664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-seqfrec 10665 |
| This theorem is referenced by: nninfdclemp1 13016 nninfdclemlt 13017 nninfdclemf1 13018 |
| Copyright terms: Public domain | W3C validator |