ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqmptd GIF version

Theorem feqmptd 5549
Description: Deduction form of dffn5im 5542. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
feqmptd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptd (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem feqmptd
StepHypRef Expression
1 feqmptd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffn 5347 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 . 2 (𝜑𝐹 Fn 𝐴)
4 dffn5im 5542 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
53, 4syl 14 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cmpt 4050   Fn wfn 5193  wf 5194  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by:  feqresmpt  5550  cofmpt  5665  fcoconst  5667  suppssof1  6078  ofco  6079  caofinvl  6083  caofcom  6084  mapxpen  6826  xpmapenlem  6827  cnrecnv  10874  grpinvcnv  12767  lmcn2  13074  cnmpt11f  13078  cnmpt21f  13086  cncfmpt1f  13378  negfcncf  13383  cnrehmeocntop  13387  dvcnp2cntop  13457  dvimulf  13464  dvcoapbr  13465  dvcj  13467  dvfre  13468  dvmptcjx  13480  dvef  13482
  Copyright terms: Public domain W3C validator