ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqmptd GIF version

Theorem feqmptd 5610
Description: Deduction form of dffn5im 5602. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
feqmptd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptd (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem feqmptd
StepHypRef Expression
1 feqmptd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffn 5403 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 . 2 (𝜑𝐹 Fn 𝐴)
4 dffn5im 5602 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
53, 4syl 14 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cmpt 4090   Fn wfn 5249  wf 5250  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262
This theorem is referenced by:  feqresmpt  5611  cofmpt  5727  fcoconst  5729  suppssof1  6148  ofco  6149  caofinvl  6155  caofcom  6156  caofdig  6159  mapxpen  6904  xpmapenlem  6905  cnrecnv  11054  grpinvcnv  13140  mulgrhm2  14098  lmcn2  14448  cnmpt11f  14452  cnmpt21f  14460  cncfmpt1f  14752  negfcncf  14760  cnrehmeocntop  14764  ivthreinc  14799  dvcnp2cntop  14848  dvimulf  14855  dvcoapbr  14856  dvcj  14858  dvfre  14859  dvmptcjx  14871  dvef  14873
  Copyright terms: Public domain W3C validator