![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feqmptd | GIF version |
Description: Deduction form of dffn5im 5603. (Contributed by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
feqmptd | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5404 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | dffn5im 5603 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ↦ cmpt 4091 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 |
This theorem is referenced by: feqresmpt 5612 cofmpt 5728 fcoconst 5730 suppssof1 6150 ofco 6151 caofinvl 6157 caofcom 6158 caofdig 6161 mapxpen 6906 xpmapenlem 6907 cnrecnv 11057 grpinvcnv 13143 mulgrhm2 14109 lmcn2 14459 cnmpt11f 14463 cnmpt21f 14471 cncfmpt1f 14777 negfcncf 14785 cnrehmeocntop 14789 ivthreinc 14824 dvcnp2cntop 14878 dvimulf 14885 dvcoapbr 14886 dvcj 14888 dvfre 14889 dvmptcjx 14903 dvef 14906 plycolemc 14936 plyco 14937 plycjlemc 14938 |
Copyright terms: Public domain | W3C validator |