| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feqmptd | GIF version | ||
| Description: Deduction form of dffn5im 5609. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| feqmptd | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5410 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | dffn5im 5609 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ↦ cmpt 4095 Fn wfn 5254 ⟶wf 5255 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: feqresmpt 5618 cofmpt 5734 fcoconst 5736 suppssof1 6157 ofco 6158 caofinvl 6165 caofcom 6170 caofdig 6173 mapxpen 6918 xpmapenlem 6919 cnrecnv 11094 pwsplusgval 12999 pwsmulrval 13000 prdsidlem 13151 grpinvcnv 13272 pwsinvg 13316 pwssub 13317 mulgrhm2 14244 psrlinv 14318 psr1clfi 14322 lmcn2 14624 cnmpt11f 14628 cnmpt21f 14636 cncfmpt1f 14942 negfcncf 14950 cnrehmeocntop 14954 ivthreinc 14989 dvcnp2cntop 15043 dvimulf 15050 dvcoapbr 15051 dvcj 15053 dvfre 15054 dvmptcjx 15068 dvef 15071 plycolemc 15102 plyco 15103 plycjlemc 15104 dvply2g 15110 2omap 15750 |
| Copyright terms: Public domain | W3C validator |