ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqmptd GIF version

Theorem feqmptd 5539
Description: Deduction form of dffn5im 5532. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
feqmptd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptd (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem feqmptd
StepHypRef Expression
1 feqmptd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffn 5337 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 . 2 (𝜑𝐹 Fn 𝐴)
4 dffn5im 5532 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
53, 4syl 14 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cmpt 4043   Fn wfn 5183  wf 5184  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  feqresmpt  5540  cofmpt  5654  fcoconst  5656  suppssof1  6067  ofco  6068  caofinvl  6072  caofcom  6073  mapxpen  6814  xpmapenlem  6815  cnrecnv  10852  lmcn2  12920  cnmpt11f  12924  cnmpt21f  12932  cncfmpt1f  13224  negfcncf  13229  cnrehmeocntop  13233  dvcnp2cntop  13303  dvimulf  13310  dvcoapbr  13311  dvcj  13313  dvfre  13314  dvmptcjx  13326  dvef  13328
  Copyright terms: Public domain W3C validator