Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feqmptd | GIF version |
Description: Deduction form of dffn5im 5532. (Contributed by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
feqmptd | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5337 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | dffn5im 5532 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ↦ cmpt 4043 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: feqresmpt 5540 cofmpt 5654 fcoconst 5656 suppssof1 6067 ofco 6068 caofinvl 6072 caofcom 6073 mapxpen 6814 xpmapenlem 6815 cnrecnv 10852 lmcn2 12920 cnmpt11f 12924 cnmpt21f 12932 cncfmpt1f 13224 negfcncf 13229 cnrehmeocntop 13233 dvcnp2cntop 13303 dvimulf 13310 dvcoapbr 13311 dvcj 13313 dvfre 13314 dvmptcjx 13326 dvef 13328 |
Copyright terms: Public domain | W3C validator |