| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feqmptd | GIF version | ||
| Description: Deduction form of dffn5im 5618. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| feqmptd | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5419 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | dffn5im 5618 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ↦ cmpt 4104 Fn wfn 5263 ⟶wf 5264 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 |
| This theorem is referenced by: feqresmpt 5627 cofmpt 5743 fcoconst 5745 suppssof1 6166 ofco 6167 caofinvl 6174 caofcom 6179 caofdig 6182 mapxpen 6927 xpmapenlem 6928 cnrecnv 11140 pwsplusgval 13045 pwsmulrval 13046 prdsidlem 13197 grpinvcnv 13318 pwsinvg 13362 pwssub 13363 mulgrhm2 14290 psrlinv 14364 psr1clfi 14368 lmcn2 14670 cnmpt11f 14674 cnmpt21f 14682 cncfmpt1f 14988 negfcncf 14996 cnrehmeocntop 15000 ivthreinc 15035 dvcnp2cntop 15089 dvimulf 15096 dvcoapbr 15097 dvcj 15099 dvfre 15100 dvmptcjx 15114 dvef 15117 plycolemc 15148 plyco 15149 plycjlemc 15150 dvply2g 15156 2omap 15796 |
| Copyright terms: Public domain | W3C validator |