| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > feqmptd | GIF version | ||
| Description: Deduction form of dffn5im 5606. (Contributed by Mario Carneiro, 8-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| Ref | Expression | 
|---|---|
| feqmptd | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feqmptd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5407 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 4 | dffn5im 5606 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ↦ cmpt 4094 Fn wfn 5253 ⟶wf 5254 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 | 
| This theorem is referenced by: feqresmpt 5615 cofmpt 5731 fcoconst 5733 suppssof1 6153 ofco 6154 caofinvl 6160 caofcom 6161 caofdig 6164 mapxpen 6909 xpmapenlem 6910 cnrecnv 11075 grpinvcnv 13200 mulgrhm2 14166 lmcn2 14516 cnmpt11f 14520 cnmpt21f 14528 cncfmpt1f 14834 negfcncf 14842 cnrehmeocntop 14846 ivthreinc 14881 dvcnp2cntop 14935 dvimulf 14942 dvcoapbr 14943 dvcj 14945 dvfre 14946 dvmptcjx 14960 dvef 14963 plycolemc 14994 plyco 14995 plycjlemc 14996 dvply2g 15002 | 
| Copyright terms: Public domain | W3C validator |