| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feqmptd | GIF version | ||
| Description: Deduction form of dffn5im 5678. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| feqmptd | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5472 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | dffn5im 5678 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ↦ cmpt 4144 Fn wfn 5312 ⟶wf 5313 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 |
| This theorem is referenced by: feqresmpt 5687 cofmpt 5803 fcoconst 5805 suppssof1 6234 ofco 6235 caofinvl 6242 caofcom 6247 caofdig 6250 mapxpen 7005 xpmapenlem 7006 cnrecnv 11416 pwsplusgval 13323 pwsmulrval 13324 prdsidlem 13475 grpinvcnv 13596 pwsinvg 13640 pwssub 13641 mulgrhm2 14568 psrlinv 14642 psr1clfi 14646 lmcn2 14948 cnmpt11f 14952 cnmpt21f 14960 cncfmpt1f 15266 negfcncf 15274 cnrehmeocntop 15278 ivthreinc 15313 dvcnp2cntop 15367 dvimulf 15374 dvcoapbr 15375 dvcj 15377 dvfre 15378 dvmptcjx 15392 dvef 15395 plycolemc 15426 plyco 15427 plycjlemc 15428 dvply2g 15434 2omap 16318 pw1map 16320 |
| Copyright terms: Public domain | W3C validator |