ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqmptd GIF version

Theorem feqmptd 5645
Description: Deduction form of dffn5im 5637. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
feqmptd.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptd (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem feqmptd
StepHypRef Expression
1 feqmptd.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 ffn 5435 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 . 2 (𝜑𝐹 Fn 𝐴)
4 dffn5im 5637 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
53, 4syl 14 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cmpt 4113   Fn wfn 5275  wf 5276  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288
This theorem is referenced by:  feqresmpt  5646  cofmpt  5762  fcoconst  5764  suppssof1  6189  ofco  6190  caofinvl  6197  caofcom  6202  caofdig  6205  mapxpen  6960  xpmapenlem  6961  cnrecnv  11296  pwsplusgval  13202  pwsmulrval  13203  prdsidlem  13354  grpinvcnv  13475  pwsinvg  13519  pwssub  13520  mulgrhm2  14447  psrlinv  14521  psr1clfi  14525  lmcn2  14827  cnmpt11f  14831  cnmpt21f  14839  cncfmpt1f  15145  negfcncf  15153  cnrehmeocntop  15157  ivthreinc  15192  dvcnp2cntop  15246  dvimulf  15253  dvcoapbr  15254  dvcj  15256  dvfre  15257  dvmptcjx  15271  dvef  15274  plycolemc  15305  plyco  15306  plycjlemc  15307  dvply2g  15313  2omap  16071  pw1map  16073
  Copyright terms: Public domain W3C validator