| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feqmptd | GIF version | ||
| Description: Deduction form of dffn5im 5637. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| feqmptd | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5435 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | dffn5im 5637 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ↦ cmpt 4113 Fn wfn 5275 ⟶wf 5276 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 |
| This theorem is referenced by: feqresmpt 5646 cofmpt 5762 fcoconst 5764 suppssof1 6189 ofco 6190 caofinvl 6197 caofcom 6202 caofdig 6205 mapxpen 6960 xpmapenlem 6961 cnrecnv 11296 pwsplusgval 13202 pwsmulrval 13203 prdsidlem 13354 grpinvcnv 13475 pwsinvg 13519 pwssub 13520 mulgrhm2 14447 psrlinv 14521 psr1clfi 14525 lmcn2 14827 cnmpt11f 14831 cnmpt21f 14839 cncfmpt1f 15145 negfcncf 15153 cnrehmeocntop 15157 ivthreinc 15192 dvcnp2cntop 15246 dvimulf 15253 dvcoapbr 15254 dvcj 15256 dvfre 15257 dvmptcjx 15271 dvef 15274 plycolemc 15305 plyco 15306 plycjlemc 15307 dvply2g 15313 2omap 16071 pw1map 16073 |
| Copyright terms: Public domain | W3C validator |