ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp0 GIF version

Theorem rsp0 14049
Description: The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
rspcl.k 𝐾 = (RSpan‘𝑅)
rsp0.z 0 = (0g𝑅)
Assertion
Ref Expression
rsp0 (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })

Proof of Theorem rsp0
StepHypRef Expression
1 rlmlmod 14020 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 eqid 2196 . . . 4 (0g‘(ringLMod‘𝑅)) = (0g‘(ringLMod‘𝑅))
3 eqid 2196 . . . 4 (LSpan‘(ringLMod‘𝑅)) = (LSpan‘(ringLMod‘𝑅))
42, 3lspsn0 13978 . . 3 ((ringLMod‘𝑅) ∈ LMod → ((LSpan‘(ringLMod‘𝑅))‘{(0g‘(ringLMod‘𝑅))}) = {(0g‘(ringLMod‘𝑅))})
51, 4syl 14 . 2 (𝑅 ∈ Ring → ((LSpan‘(ringLMod‘𝑅))‘{(0g‘(ringLMod‘𝑅))}) = {(0g‘(ringLMod‘𝑅))})
6 rspcl.k . . . 4 𝐾 = (RSpan‘𝑅)
7 rspvalg 14028 . . . 4 (𝑅 ∈ Ring → (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)))
86, 7eqtrid 2241 . . 3 (𝑅 ∈ Ring → 𝐾 = (LSpan‘(ringLMod‘𝑅)))
9 rsp0.z . . . . 5 0 = (0g𝑅)
10 rlm0g 14013 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) = (0g‘(ringLMod‘𝑅)))
119, 10eqtrid 2241 . . . 4 (𝑅 ∈ Ring → 0 = (0g‘(ringLMod‘𝑅)))
1211sneqd 3635 . . 3 (𝑅 ∈ Ring → { 0 } = {(0g‘(ringLMod‘𝑅))})
138, 12fveq12d 5565 . 2 (𝑅 ∈ Ring → (𝐾‘{ 0 }) = ((LSpan‘(ringLMod‘𝑅))‘{(0g‘(ringLMod‘𝑅))}))
145, 13, 123eqtr4d 2239 1 (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {csn 3622  cfv 5258  0gc0g 12927  Ringcrg 13552  LModclmod 13843  LSpanclspn 13942  ringLModcrglmod 13990  RSpancrsp 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-mgp 13477  df-ur 13516  df-ring 13554  df-subrg 13775  df-lmod 13845  df-lssm 13909  df-lsp 13943  df-sra 13991  df-rgmod 13992  df-rsp 14026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator