| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitinvinv | GIF version | ||
| Description: The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| unitinvinv | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitinvcl.1 | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | 1 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 3 | eqid 2229 | . . . . . . 7 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 4 | 3 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 5 | ringsrg 13996 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 6 | 2, 4, 5 | unitgrpbasd 14064 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 7 | 6 | eleq2d 2299 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 8 | 7 | pm5.32i 454 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) ↔ (𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 9 | 1, 3 | unitgrp 14065 | . . . 4 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
| 10 | eqid 2229 | . . . . 5 ⊢ (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) | |
| 11 | eqid 2229 | . . . . 5 ⊢ (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) | |
| 12 | 10, 11 | grpinvinv 13586 | . . . 4 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋) |
| 13 | 9, 12 | sylan 283 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋) |
| 14 | 8, 13 | sylbi 121 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋) |
| 15 | unitinvcl.2 | . . . . . . 7 ⊢ 𝐼 = (invr‘𝑅) | |
| 16 | 15 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐼 = (invr‘𝑅)) |
| 17 | id 19 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
| 18 | 2, 4, 16, 17 | invrfvald 14071 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 19 | 18 | fveq1d 5625 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐼‘𝑋) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) |
| 20 | 18, 19 | fveq12d 5630 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘(𝐼‘𝑋)) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋))) |
| 21 | 20 | eqeq1d 2238 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐼‘(𝐼‘𝑋)) = 𝑋 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋)) |
| 22 | 21 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘(𝐼‘𝑋)) = 𝑋 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋)) |
| 23 | 14, 22 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 ↾s cress 13019 Grpcgrp 13519 invgcminusg 13520 mulGrpcmgp 13869 Ringcrg 13945 Unitcui 14036 invrcinvr 14069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-tpos 6381 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-cmn 13809 df-abl 13810 df-mgp 13870 df-ur 13909 df-srg 13913 df-ring 13947 df-oppr 14017 df-dvdsr 14038 df-unit 14039 df-invr 14070 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |