![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitinvinv | GIF version |
Description: The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
unitinvinv | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | 1 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
3 | eqid 2193 | . . . . . . 7 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
4 | 3 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)) |
5 | ringsrg 13543 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
6 | 2, 4, 5 | unitgrpbasd 13611 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
7 | 6 | eleq2d 2263 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
8 | 7 | pm5.32i 454 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) ↔ (𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
9 | 1, 3 | unitgrp 13612 | . . . 4 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
10 | eqid 2193 | . . . . 5 ⊢ (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) | |
11 | eqid 2193 | . . . . 5 ⊢ (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) | |
12 | 10, 11 | grpinvinv 13139 | . . . 4 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋) |
13 | 9, 12 | sylan 283 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋) |
14 | 8, 13 | sylbi 121 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋) |
15 | unitinvcl.2 | . . . . . . 7 ⊢ 𝐼 = (invr‘𝑅) | |
16 | 15 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐼 = (invr‘𝑅)) |
17 | id 19 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
18 | 2, 4, 16, 17 | invrfvald 13618 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
19 | 18 | fveq1d 5556 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐼‘𝑋) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) |
20 | 18, 19 | fveq12d 5561 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘(𝐼‘𝑋)) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋))) |
21 | 20 | eqeq1d 2202 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐼‘(𝐼‘𝑋)) = 𝑋 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋)) |
22 | 21 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘(𝐼‘𝑋)) = 𝑋 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋)) |
23 | 14, 22 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 ↾s cress 12619 Grpcgrp 13072 invgcminusg 13073 mulGrpcmgp 13416 Ringcrg 13492 Unitcui 13583 invrcinvr 13616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-cmn 13356 df-abl 13357 df-mgp 13417 df-ur 13456 df-srg 13460 df-ring 13494 df-oppr 13564 df-dvdsr 13585 df-unit 13586 df-invr 13617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |