ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitinvinv GIF version

Theorem unitinvinv 14073
Description: The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1 𝑈 = (Unit‘𝑅)
unitinvcl.2 𝐼 = (invr𝑅)
Assertion
Ref Expression
unitinvinv ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼‘(𝐼𝑋)) = 𝑋)

Proof of Theorem unitinvinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
21a1i 9 . . . . . 6 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
3 eqid 2229 . . . . . . 7 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
43a1i 9 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈))
5 ringsrg 13996 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
62, 4, 5unitgrpbasd 14064 . . . . 5 (𝑅 ∈ Ring → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
76eleq2d 2299 . . . 4 (𝑅 ∈ Ring → (𝑋𝑈𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
87pm5.32i 454 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) ↔ (𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
91, 3unitgrp 14065 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
10 eqid 2229 . . . . 5 (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
11 eqid 2229 . . . . 5 (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
1210, 11grpinvinv 13586 . . . 4 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋)
139, 12sylan 283 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋)
148, 13sylbi 121 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋)
15 unitinvcl.2 . . . . . . 7 𝐼 = (invr𝑅)
1615a1i 9 . . . . . 6 (𝑅 ∈ Ring → 𝐼 = (invr𝑅))
17 id 19 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
182, 4, 16, 17invrfvald 14071 . . . . 5 (𝑅 ∈ Ring → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)))
1918fveq1d 5625 . . . . 5 (𝑅 ∈ Ring → (𝐼𝑋) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋))
2018, 19fveq12d 5630 . . . 4 (𝑅 ∈ Ring → (𝐼‘(𝐼𝑋)) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)))
2120eqeq1d 2238 . . 3 (𝑅 ∈ Ring → ((𝐼‘(𝐼𝑋)) = 𝑋 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋))
2221adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼‘(𝐼𝑋)) = 𝑋 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) = 𝑋))
2314, 22mpbird 167 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼‘(𝐼𝑋)) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  Basecbs 13018  s cress 13019  Grpcgrp 13519  invgcminusg 13520  mulGrpcmgp 13869  Ringcrg 13945  Unitcui 14036  invrcinvr 14069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-tpos 6381  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-cmn 13809  df-abl 13810  df-mgp 13870  df-ur 13909  df-srg 13913  df-ring 13947  df-oppr 14017  df-dvdsr 14038  df-unit 14039  df-invr 14070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator