ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znval GIF version

Theorem znval 13949
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znval.l = ((𝐹 ∘ ≤ ) ∘ 𝐹)
Assertion
Ref Expression
znval (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem znval
Dummy variables 𝑓 𝑛 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znval.y . 2 𝑌 = (ℤ/nℤ‘𝑁)
2 df-zn 13931 . . 3 ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
3 zringring 13909 . . . . 5 ring ∈ Ring
43a1i 9 . . . 4 (𝑛 = 𝑁 → ℤring ∈ Ring)
5 vex 2755 . . . . . . 7 𝑧 ∈ V
6 rspex 13807 . . . . . . . . . 10 (𝑧 ∈ V → (RSpan‘𝑧) ∈ V)
76elv 2756 . . . . . . . . 9 (RSpan‘𝑧) ∈ V
8 vex 2755 . . . . . . . . . 10 𝑛 ∈ V
98snex 4203 . . . . . . . . 9 {𝑛} ∈ V
107, 9fvex 5554 . . . . . . . 8 ((RSpan‘𝑧)‘{𝑛}) ∈ V
11 eqgex 13177 . . . . . . . 8 ((𝑧 ∈ V ∧ ((RSpan‘𝑧)‘{𝑛}) ∈ V) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V)
125, 10, 11mp2an 426 . . . . . . 7 (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V
13 qusex 12805 . . . . . . 7 ((𝑧 ∈ V ∧ (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
145, 12, 13mp2an 426 . . . . . 6 (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V
1514a1i 9 . . . . 5 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
16 id 19 . . . . . . 7 (𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) → 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))))
17 simpr 110 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑧 = ℤring)
1817fveq2d 5538 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = (RSpan‘ℤring))
19 znval.s . . . . . . . . . . . 12 𝑆 = (RSpan‘ℤring)
2018, 19eqtr4di 2240 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = 𝑆)
21 simpl 109 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑛 = 𝑁)
2221sneqd 3620 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → {𝑛} = {𝑁})
2320, 22fveq12d 5541 . . . . . . . . . 10 ((𝑛 = 𝑁𝑧 = ℤring) → ((RSpan‘𝑧)‘{𝑛}) = (𝑆‘{𝑁}))
2417, 23oveq12d 5915 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) = (ℤring ~QG (𝑆‘{𝑁})))
2517, 24oveq12d 5915 . . . . . . . 8 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))))
26 znval.u . . . . . . . 8 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
2725, 26eqtr4di 2240 . . . . . . 7 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = 𝑈)
2816, 27sylan9eqr 2244 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑠 = 𝑈)
29 eqid 2189 . . . . . . . . . . . 12 (ℤRHom‘𝑠) = (ℤRHom‘𝑠)
3029zrhex 13935 . . . . . . . . . . 11 (𝑠 ∈ V → (ℤRHom‘𝑠) ∈ V)
3130elv 2756 . . . . . . . . . 10 (ℤRHom‘𝑠) ∈ V
3231resex 4966 . . . . . . . . 9 ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V
3332a1i 9 . . . . . . . 8 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V)
34 id 19 . . . . . . . . . . . 12 (𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) → 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))))
3528fveq2d 5538 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (ℤRHom‘𝑠) = (ℤRHom‘𝑈))
36 simpll 527 . . . . . . . . . . . . . . . . 17 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑛 = 𝑁)
3736eqeq1d 2198 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑛 = 0 ↔ 𝑁 = 0))
3836oveq2d 5913 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (0..^𝑛) = (0..^𝑁))
3937, 38ifbieq2d 3573 . . . . . . . . . . . . . . 15 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = if(𝑁 = 0, ℤ, (0..^𝑁)))
40 znval.w . . . . . . . . . . . . . . 15 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4139, 40eqtr4di 2240 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = 𝑊)
4235, 41reseq12d 4926 . . . . . . . . . . . . 13 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = ((ℤRHom‘𝑈) ↾ 𝑊))
43 znval.f . . . . . . . . . . . . 13 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
4442, 43eqtr4di 2240 . . . . . . . . . . . 12 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = 𝐹)
4534, 44sylan9eqr 2244 . . . . . . . . . . 11 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4645coeq1d 4806 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → (𝑓 ∘ ≤ ) = (𝐹 ∘ ≤ ))
4745cnveqd 4821 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4846, 47coeq12d 4809 . . . . . . . . 9 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = ((𝐹 ∘ ≤ ) ∘ 𝐹))
49 znval.l . . . . . . . . 9 = ((𝐹 ∘ ≤ ) ∘ 𝐹)
5048, 49eqtr4di 2240 . . . . . . . 8 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5133, 50csbied 3118 . . . . . . 7 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5251opeq2d 3800 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩ = ⟨(le‘ndx), ⟩)
5328, 52oveq12d 5915 . . . . 5 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
5415, 53csbied 3118 . . . 4 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
554, 54csbied 3118 . . 3 (𝑛 = 𝑁ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
56 id 19 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
57 rspex 13807 . . . . . . . . . 10 (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V)
583, 57ax-mp 5 . . . . . . . . 9 (RSpan‘ℤring) ∈ V
5919, 58eqeltri 2262 . . . . . . . 8 𝑆 ∈ V
60 snexg 4202 . . . . . . . 8 (𝑁 ∈ ℕ0 → {𝑁} ∈ V)
61 fvexg 5553 . . . . . . . 8 ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V)
6259, 60, 61sylancr 414 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V)
63 eqgex 13177 . . . . . . 7 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
643, 62, 63sylancr 414 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
65 qusex 12805 . . . . . 6 ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
663, 64, 65sylancr 414 . . . . 5 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
6726, 66eqeltrid 2276 . . . 4 (𝑁 ∈ ℕ0𝑈 ∈ V)
68 plendxnn 12717 . . . . 5 (le‘ndx) ∈ ℕ
6968a1i 9 . . . 4 (𝑁 ∈ ℕ0 → (le‘ndx) ∈ ℕ)
70 eqid 2189 . . . . . . . . . . 11 (ℤRHom‘𝑈) = (ℤRHom‘𝑈)
7170zrhex 13935 . . . . . . . . . 10 (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V)
7267, 71syl 14 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) ∈ V)
73 resexg 4965 . . . . . . . . 9 ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7472, 73syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7543, 74eqeltrid 2276 . . . . . . 7 (𝑁 ∈ ℕ0𝐹 ∈ V)
76 xrex 9888 . . . . . . . . 9 * ∈ V
7776, 76xpex 4759 . . . . . . . 8 (ℝ* × ℝ*) ∈ V
78 lerelxr 8051 . . . . . . . 8 ≤ ⊆ (ℝ* × ℝ*)
7977, 78ssexi 4156 . . . . . . 7 ≤ ∈ V
80 coexg 5191 . . . . . . 7 ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V)
8175, 79, 80sylancl 413 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V)
82 cnvexg 5184 . . . . . . 7 (𝐹 ∈ V → 𝐹 ∈ V)
8375, 82syl 14 . . . . . 6 (𝑁 ∈ ℕ0𝐹 ∈ V)
84 coexg 5191 . . . . . 6 (((𝐹 ∘ ≤ ) ∈ V ∧ 𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8581, 83, 84syl2anc 411 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8649, 85eqeltrid 2276 . . . 4 (𝑁 ∈ ℕ0 ∈ V)
87 setsex 12547 . . . 4 ((𝑈 ∈ V ∧ (le‘ndx) ∈ ℕ ∧ ∈ V) → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
8867, 69, 86, 87syl3anc 1249 . . 3 (𝑁 ∈ ℕ0 → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
892, 55, 56, 88fvmptd3 5630 . 2 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) = (𝑈 sSet ⟨(le‘ndx), ⟩))
901, 89eqtrid 2234 1 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  Vcvv 2752  csb 3072  ifcif 3549  {csn 3607  cop 3610   × cxp 4642  ccnv 4643  cres 4646  ccom 4648  cfv 5235  (class class class)co 5897  0cc0 7842  *cxr 8022  cle 8024  cn 8950  0cn0 9207  cz 9284  ..^cfzo 10174  ndxcnx 12512   sSet csts 12513  lecple 12599   /s cqus 12780   ~QG cqg 13125  Ringcrg 13367  RSpancrsp 13801  ringczring 13906  ℤRHomczrh 13926  ℤ/nczn 13928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-addf 7964  ax-mulf 7965
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-ec 6562  df-map 6677  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-9 9016  df-n0 9208  df-z 9285  df-dec 9416  df-uz 9560  df-fz 10041  df-cj 10886  df-struct 12517  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-mulr 12606  df-starv 12607  df-sca 12608  df-vsca 12609  df-ip 12610  df-ple 12612  df-0g 12766  df-iimas 12782  df-qus 12783  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-subg 13126  df-eqg 13128  df-cmn 13242  df-mgp 13292  df-ur 13331  df-ring 13369  df-cring 13370  df-rhm 13519  df-subrg 13583  df-lsp 13720  df-sra 13768  df-rgmod 13769  df-rsp 13803  df-icnfld 13882  df-zring 13907  df-zrh 13929  df-zn 13931
This theorem is referenced by:  znle  13950  znval2  13951  znbaslemnn  13952
  Copyright terms: Public domain W3C validator