ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znval GIF version

Theorem znval 14594
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znval.l = ((𝐹 ∘ ≤ ) ∘ 𝐹)
Assertion
Ref Expression
znval (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem znval
Dummy variables 𝑓 𝑛 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znval.y . 2 𝑌 = (ℤ/nℤ‘𝑁)
2 df-zn 14574 . . 3 ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
3 zringring 14551 . . . . 5 ring ∈ Ring
43a1i 9 . . . 4 (𝑛 = 𝑁 → ℤring ∈ Ring)
5 vex 2802 . . . . . . 7 𝑧 ∈ V
6 rspex 14432 . . . . . . . . . 10 (𝑧 ∈ V → (RSpan‘𝑧) ∈ V)
76elv 2803 . . . . . . . . 9 (RSpan‘𝑧) ∈ V
8 vex 2802 . . . . . . . . . 10 𝑛 ∈ V
98snex 4268 . . . . . . . . 9 {𝑛} ∈ V
107, 9fvex 5646 . . . . . . . 8 ((RSpan‘𝑧)‘{𝑛}) ∈ V
11 eqgex 13753 . . . . . . . 8 ((𝑧 ∈ V ∧ ((RSpan‘𝑧)‘{𝑛}) ∈ V) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V)
125, 10, 11mp2an 426 . . . . . . 7 (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V
13 qusex 13353 . . . . . . 7 ((𝑧 ∈ V ∧ (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
145, 12, 13mp2an 426 . . . . . 6 (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V
1514a1i 9 . . . . 5 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
16 id 19 . . . . . . 7 (𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) → 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))))
17 simpr 110 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑧 = ℤring)
1817fveq2d 5630 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = (RSpan‘ℤring))
19 znval.s . . . . . . . . . . . 12 𝑆 = (RSpan‘ℤring)
2018, 19eqtr4di 2280 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = 𝑆)
21 simpl 109 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑛 = 𝑁)
2221sneqd 3679 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → {𝑛} = {𝑁})
2320, 22fveq12d 5633 . . . . . . . . . 10 ((𝑛 = 𝑁𝑧 = ℤring) → ((RSpan‘𝑧)‘{𝑛}) = (𝑆‘{𝑁}))
2417, 23oveq12d 6018 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) = (ℤring ~QG (𝑆‘{𝑁})))
2517, 24oveq12d 6018 . . . . . . . 8 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))))
26 znval.u . . . . . . . 8 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
2725, 26eqtr4di 2280 . . . . . . 7 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = 𝑈)
2816, 27sylan9eqr 2284 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑠 = 𝑈)
29 eqid 2229 . . . . . . . . . . . 12 (ℤRHom‘𝑠) = (ℤRHom‘𝑠)
3029zrhex 14579 . . . . . . . . . . 11 (𝑠 ∈ V → (ℤRHom‘𝑠) ∈ V)
3130elv 2803 . . . . . . . . . 10 (ℤRHom‘𝑠) ∈ V
3231resex 5045 . . . . . . . . 9 ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V
3332a1i 9 . . . . . . . 8 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V)
34 id 19 . . . . . . . . . . . 12 (𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) → 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))))
3528fveq2d 5630 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (ℤRHom‘𝑠) = (ℤRHom‘𝑈))
36 simpll 527 . . . . . . . . . . . . . . . . 17 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑛 = 𝑁)
3736eqeq1d 2238 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑛 = 0 ↔ 𝑁 = 0))
3836oveq2d 6016 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (0..^𝑛) = (0..^𝑁))
3937, 38ifbieq2d 3627 . . . . . . . . . . . . . . 15 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = if(𝑁 = 0, ℤ, (0..^𝑁)))
40 znval.w . . . . . . . . . . . . . . 15 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4139, 40eqtr4di 2280 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = 𝑊)
4235, 41reseq12d 5005 . . . . . . . . . . . . 13 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = ((ℤRHom‘𝑈) ↾ 𝑊))
43 znval.f . . . . . . . . . . . . 13 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
4442, 43eqtr4di 2280 . . . . . . . . . . . 12 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = 𝐹)
4534, 44sylan9eqr 2284 . . . . . . . . . . 11 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4645coeq1d 4882 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → (𝑓 ∘ ≤ ) = (𝐹 ∘ ≤ ))
4745cnveqd 4897 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4846, 47coeq12d 4885 . . . . . . . . 9 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = ((𝐹 ∘ ≤ ) ∘ 𝐹))
49 znval.l . . . . . . . . 9 = ((𝐹 ∘ ≤ ) ∘ 𝐹)
5048, 49eqtr4di 2280 . . . . . . . 8 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5133, 50csbied 3171 . . . . . . 7 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5251opeq2d 3863 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩ = ⟨(le‘ndx), ⟩)
5328, 52oveq12d 6018 . . . . 5 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
5415, 53csbied 3171 . . . 4 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
554, 54csbied 3171 . . 3 (𝑛 = 𝑁ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
56 id 19 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
57 rspex 14432 . . . . . . . . . 10 (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V)
583, 57ax-mp 5 . . . . . . . . 9 (RSpan‘ℤring) ∈ V
5919, 58eqeltri 2302 . . . . . . . 8 𝑆 ∈ V
60 snexg 4267 . . . . . . . 8 (𝑁 ∈ ℕ0 → {𝑁} ∈ V)
61 fvexg 5645 . . . . . . . 8 ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V)
6259, 60, 61sylancr 414 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V)
63 eqgex 13753 . . . . . . 7 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
643, 62, 63sylancr 414 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
65 qusex 13353 . . . . . 6 ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
663, 64, 65sylancr 414 . . . . 5 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
6726, 66eqeltrid 2316 . . . 4 (𝑁 ∈ ℕ0𝑈 ∈ V)
68 plendxnn 13231 . . . . 5 (le‘ndx) ∈ ℕ
6968a1i 9 . . . 4 (𝑁 ∈ ℕ0 → (le‘ndx) ∈ ℕ)
70 eqid 2229 . . . . . . . . . . 11 (ℤRHom‘𝑈) = (ℤRHom‘𝑈)
7170zrhex 14579 . . . . . . . . . 10 (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V)
7267, 71syl 14 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) ∈ V)
73 resexg 5044 . . . . . . . . 9 ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7472, 73syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7543, 74eqeltrid 2316 . . . . . . 7 (𝑁 ∈ ℕ0𝐹 ∈ V)
76 xrex 10048 . . . . . . . . 9 * ∈ V
7776, 76xpex 4833 . . . . . . . 8 (ℝ* × ℝ*) ∈ V
78 lerelxr 8205 . . . . . . . 8 ≤ ⊆ (ℝ* × ℝ*)
7977, 78ssexi 4221 . . . . . . 7 ≤ ∈ V
80 coexg 5272 . . . . . . 7 ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V)
8175, 79, 80sylancl 413 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V)
82 cnvexg 5265 . . . . . . 7 (𝐹 ∈ V → 𝐹 ∈ V)
8375, 82syl 14 . . . . . 6 (𝑁 ∈ ℕ0𝐹 ∈ V)
84 coexg 5272 . . . . . 6 (((𝐹 ∘ ≤ ) ∈ V ∧ 𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8581, 83, 84syl2anc 411 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8649, 85eqeltrid 2316 . . . 4 (𝑁 ∈ ℕ0 ∈ V)
87 setsex 13059 . . . 4 ((𝑈 ∈ V ∧ (le‘ndx) ∈ ℕ ∧ ∈ V) → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
8867, 69, 86, 87syl3anc 1271 . . 3 (𝑁 ∈ ℕ0 → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
892, 55, 56, 88fvmptd3 5727 . 2 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) = (𝑈 sSet ⟨(le‘ndx), ⟩))
901, 89eqtrid 2274 1 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  csb 3124  ifcif 3602  {csn 3666  cop 3669   × cxp 4716  ccnv 4717  cres 4720  ccom 4722  cfv 5317  (class class class)co 6000  0cc0 7995  *cxr 8176  cle 8178  cn 9106  0cn0 9365  cz 9442  ..^cfzo 10334  ndxcnx 13024   sSet csts 13025  lecple 13112   /s cqus 13328   ~QG cqg 13701  Ringcrg 13954  RSpancrsp 14426  ringczring 14548  ℤRHomczrh 14569  ℤ/nczn 14571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-ec 6680  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-rp 9846  df-fz 10201  df-cj 11348  df-abs 11505  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-starv 13120  df-sca 13121  df-vsca 13122  df-ip 13123  df-tset 13124  df-ple 13125  df-ds 13127  df-unif 13128  df-0g 13286  df-topgen 13288  df-iimas 13330  df-qus 13331  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-eqg 13704  df-cmn 13818  df-mgp 13879  df-ur 13918  df-ring 13956  df-cring 13957  df-rhm 14110  df-subrg 14177  df-lsp 14345  df-sra 14393  df-rgmod 14394  df-rsp 14428  df-bl 14504  df-mopn 14505  df-fg 14507  df-metu 14508  df-cnfld 14515  df-zring 14549  df-zrh 14572  df-zn 14574
This theorem is referenced by:  znle  14595  znval2  14596  znbaslemnn  14597
  Copyright terms: Public domain W3C validator