| Step | Hyp | Ref
| Expression |
| 1 | | znval.y |
. 2
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 2 | | df-zn 14172 |
. . 3
⊢
ℤ/nℤ = (𝑛 ∈ ℕ0 ↦
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |
| 3 | | zringring 14149 |
. . . . 5
⊢
ℤring ∈ Ring |
| 4 | 3 | a1i 9 |
. . . 4
⊢ (𝑛 = 𝑁 → ℤring ∈
Ring) |
| 5 | | vex 2766 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 6 | | rspex 14030 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V →
(RSpan‘𝑧) ∈
V) |
| 7 | 6 | elv 2767 |
. . . . . . . . 9
⊢
(RSpan‘𝑧)
∈ V |
| 8 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑛 ∈ V |
| 9 | 8 | snex 4218 |
. . . . . . . . 9
⊢ {𝑛} ∈ V |
| 10 | 7, 9 | fvex 5578 |
. . . . . . . 8
⊢
((RSpan‘𝑧)‘{𝑛}) ∈ V |
| 11 | | eqgex 13351 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧
((RSpan‘𝑧)‘{𝑛}) ∈ V) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V) |
| 12 | 5, 10, 11 | mp2an 426 |
. . . . . . 7
⊢ (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛})) ∈ V |
| 13 | | qusex 12968 |
. . . . . . 7
⊢ ((𝑧 ∈ V ∧ (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛})) ∈ V) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V) |
| 14 | 5, 12, 13 | mp2an 426 |
. . . . . 6
⊢ (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) ∈ V |
| 15 | 14 | a1i 9 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) ∈ V) |
| 16 | | id 19 |
. . . . . . 7
⊢ (𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) → 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) |
| 17 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → 𝑧 =
ℤring) |
| 18 | 17 | fveq2d 5562 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
(RSpan‘𝑧) =
(RSpan‘ℤring)) |
| 19 | | znval.s |
. . . . . . . . . . . 12
⊢ 𝑆 =
(RSpan‘ℤring) |
| 20 | 18, 19 | eqtr4di 2247 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
(RSpan‘𝑧) = 𝑆) |
| 21 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → 𝑛 = 𝑁) |
| 22 | 21 | sneqd 3635 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → {𝑛} = {𝑁}) |
| 23 | 20, 22 | fveq12d 5565 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
((RSpan‘𝑧)‘{𝑛}) = (𝑆‘{𝑁})) |
| 24 | 17, 23 | oveq12d 5940 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛})) = (ℤring
~QG (𝑆‘{𝑁}))) |
| 25 | 17, 24 | oveq12d 5940 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) = (ℤring
/s (ℤring ~QG (𝑆‘{𝑁})))) |
| 26 | | znval.u |
. . . . . . . 8
⊢ 𝑈 = (ℤring
/s (ℤring ~QG (𝑆‘{𝑁}))) |
| 27 | 25, 26 | eqtr4di 2247 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) = 𝑈) |
| 28 | 16, 27 | sylan9eqr 2251 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑠 = 𝑈) |
| 29 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(ℤRHom‘𝑠) = (ℤRHom‘𝑠) |
| 30 | 29 | zrhex 14177 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ V →
(ℤRHom‘𝑠)
∈ V) |
| 31 | 30 | elv 2767 |
. . . . . . . . . 10
⊢
(ℤRHom‘𝑠) ∈ V |
| 32 | 31 | resex 4987 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V |
| 33 | 32 | a1i 9 |
. . . . . . . 8
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V) |
| 34 | | id 19 |
. . . . . . . . . . . 12
⊢ (𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) → 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) |
| 35 | 28 | fveq2d 5562 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (ℤRHom‘𝑠) = (ℤRHom‘𝑈)) |
| 36 | | simpll 527 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑛 = 𝑁) |
| 37 | 36 | eqeq1d 2205 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑛 = 0 ↔ 𝑁 = 0)) |
| 38 | 36 | oveq2d 5938 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (0..^𝑛) = (0..^𝑁)) |
| 39 | 37, 38 | ifbieq2d 3585 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = if(𝑁 = 0, ℤ, (0..^𝑁))) |
| 40 | | znval.w |
. . . . . . . . . . . . . . 15
⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) |
| 41 | 39, 40 | eqtr4di 2247 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = 𝑊) |
| 42 | 35, 41 | reseq12d 4947 |
. . . . . . . . . . . . 13
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = ((ℤRHom‘𝑈) ↾ 𝑊)) |
| 43 | | znval.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) |
| 44 | 42, 43 | eqtr4di 2247 |
. . . . . . . . . . . 12
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = 𝐹) |
| 45 | 34, 44 | sylan9eqr 2251 |
. . . . . . . . . . 11
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹) |
| 46 | 45 | coeq1d 4827 |
. . . . . . . . . 10
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → (𝑓 ∘ ≤ ) = (𝐹 ∘ ≤ )) |
| 47 | 45 | cnveqd 4842 |
. . . . . . . . . 10
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ◡𝑓 = ◡𝐹) |
| 48 | 46, 47 | coeq12d 4830 |
. . . . . . . . 9
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) |
| 49 | | znval.l |
. . . . . . . . 9
⊢ ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) |
| 50 | 48, 49 | eqtr4di 2247 |
. . . . . . . 8
⊢ ((((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ≤ ) |
| 51 | 33, 50 | csbied 3131 |
. . . . . . 7
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) →
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓) = ≤ ) |
| 52 | 51 | opeq2d 3815 |
. . . . . 6
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉 = 〈(le‘ndx), ≤
〉) |
| 53 | 28, 52 | oveq12d 5940 |
. . . . 5
⊢ (((𝑛 = 𝑁 ∧ 𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 54 | 15, 53 | csbied 3131 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑧 = ℤring) →
⦋(𝑧
/s (𝑧
~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 55 | 4, 54 | csbied 3131 |
. . 3
⊢ (𝑛 = 𝑁 →
⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 56 | | id 19 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
| 57 | | rspex 14030 |
. . . . . . . . . 10
⊢
(ℤring ∈ Ring →
(RSpan‘ℤring) ∈ V) |
| 58 | 3, 57 | ax-mp 5 |
. . . . . . . . 9
⊢
(RSpan‘ℤring) ∈ V |
| 59 | 19, 58 | eqeltri 2269 |
. . . . . . . 8
⊢ 𝑆 ∈ V |
| 60 | | snexg 4217 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ {𝑁} ∈
V) |
| 61 | | fvexg 5577 |
. . . . . . . 8
⊢ ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V) |
| 62 | 59, 60, 61 | sylancr 414 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑆‘{𝑁}) ∈ V) |
| 63 | | eqgex 13351 |
. . . . . . 7
⊢
((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring
~QG (𝑆‘{𝑁})) ∈ V) |
| 64 | 3, 62, 63 | sylancr 414 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) |
| 65 | | qusex 12968 |
. . . . . 6
⊢
((ℤring ∈ Ring ∧ (ℤring
~QG (𝑆‘{𝑁})) ∈ V) → (ℤring
/s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V) |
| 66 | 3, 64, 65 | sylancr 414 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (ℤring /s (ℤring
~QG (𝑆‘{𝑁}))) ∈ V) |
| 67 | 26, 66 | eqeltrid 2283 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑈 ∈
V) |
| 68 | | plendxnn 12880 |
. . . . 5
⊢
(le‘ndx) ∈ ℕ |
| 69 | 68 | a1i 9 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (le‘ndx) ∈ ℕ) |
| 70 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(ℤRHom‘𝑈) = (ℤRHom‘𝑈) |
| 71 | 70 | zrhex 14177 |
. . . . . . . . . 10
⊢ (𝑈 ∈ V →
(ℤRHom‘𝑈)
∈ V) |
| 72 | 67, 71 | syl 14 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑈) ∈ V) |
| 73 | | resexg 4986 |
. . . . . . . . 9
⊢
((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) |
| 74 | 72, 73 | syl 14 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V) |
| 75 | 43, 74 | eqeltrid 2283 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝐹 ∈
V) |
| 76 | | xrex 9931 |
. . . . . . . . 9
⊢
ℝ* ∈ V |
| 77 | 76, 76 | xpex 4778 |
. . . . . . . 8
⊢
(ℝ* × ℝ*) ∈
V |
| 78 | | lerelxr 8089 |
. . . . . . . 8
⊢ ≤
⊆ (ℝ* × ℝ*) |
| 79 | 77, 78 | ssexi 4171 |
. . . . . . 7
⊢ ≤
∈ V |
| 80 | | coexg 5214 |
. . . . . . 7
⊢ ((𝐹 ∈ V ∧ ≤ ∈ V)
→ (𝐹 ∘ ≤ )
∈ V) |
| 81 | 75, 79, 80 | sylancl 413 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝐹 ∘ ≤ )
∈ V) |
| 82 | | cnvexg 5207 |
. . . . . . 7
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
| 83 | 75, 82 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ◡𝐹 ∈ V) |
| 84 | | coexg 5214 |
. . . . . 6
⊢ (((𝐹 ∘ ≤ ) ∈ V ∧
◡𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ∈ V) |
| 85 | 81, 83, 84 | syl2anc 411 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝐹 ∘ ≤ )
∘ ◡𝐹) ∈ V) |
| 86 | 49, 85 | eqeltrid 2283 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ≤ ∈
V) |
| 87 | | setsex 12710 |
. . . 4
⊢ ((𝑈 ∈ V ∧ (le‘ndx)
∈ ℕ ∧ ≤ ∈ V) → (𝑈 sSet 〈(le‘ndx),
≤
〉) ∈ V) |
| 88 | 67, 69, 86, 87 | syl3anc 1249 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑈 sSet
〈(le‘ndx), ≤ 〉) ∈
V) |
| 89 | 2, 55, 56, 88 | fvmptd3 5655 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (ℤ/nℤ‘𝑁) = (𝑈 sSet 〈(le‘ndx), ≤
〉)) |
| 90 | 1, 89 | eqtrid 2241 |
1
⊢ (𝑁 ∈ ℕ0
→ 𝑌 = (𝑈 sSet 〈(le‘ndx),
≤
〉)) |