ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znval GIF version

Theorem znval 14473
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znval.l = ((𝐹 ∘ ≤ ) ∘ 𝐹)
Assertion
Ref Expression
znval (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem znval
Dummy variables 𝑓 𝑛 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znval.y . 2 𝑌 = (ℤ/nℤ‘𝑁)
2 df-zn 14453 . . 3 ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
3 zringring 14430 . . . . 5 ring ∈ Ring
43a1i 9 . . . 4 (𝑛 = 𝑁 → ℤring ∈ Ring)
5 vex 2776 . . . . . . 7 𝑧 ∈ V
6 rspex 14311 . . . . . . . . . 10 (𝑧 ∈ V → (RSpan‘𝑧) ∈ V)
76elv 2777 . . . . . . . . 9 (RSpan‘𝑧) ∈ V
8 vex 2776 . . . . . . . . . 10 𝑛 ∈ V
98snex 4237 . . . . . . . . 9 {𝑛} ∈ V
107, 9fvex 5609 . . . . . . . 8 ((RSpan‘𝑧)‘{𝑛}) ∈ V
11 eqgex 13632 . . . . . . . 8 ((𝑧 ∈ V ∧ ((RSpan‘𝑧)‘{𝑛}) ∈ V) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V)
125, 10, 11mp2an 426 . . . . . . 7 (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V
13 qusex 13232 . . . . . . 7 ((𝑧 ∈ V ∧ (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
145, 12, 13mp2an 426 . . . . . 6 (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V
1514a1i 9 . . . . 5 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
16 id 19 . . . . . . 7 (𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) → 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))))
17 simpr 110 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑧 = ℤring)
1817fveq2d 5593 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = (RSpan‘ℤring))
19 znval.s . . . . . . . . . . . 12 𝑆 = (RSpan‘ℤring)
2018, 19eqtr4di 2257 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = 𝑆)
21 simpl 109 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑛 = 𝑁)
2221sneqd 3651 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → {𝑛} = {𝑁})
2320, 22fveq12d 5596 . . . . . . . . . 10 ((𝑛 = 𝑁𝑧 = ℤring) → ((RSpan‘𝑧)‘{𝑛}) = (𝑆‘{𝑁}))
2417, 23oveq12d 5975 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) = (ℤring ~QG (𝑆‘{𝑁})))
2517, 24oveq12d 5975 . . . . . . . 8 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))))
26 znval.u . . . . . . . 8 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
2725, 26eqtr4di 2257 . . . . . . 7 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = 𝑈)
2816, 27sylan9eqr 2261 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑠 = 𝑈)
29 eqid 2206 . . . . . . . . . . . 12 (ℤRHom‘𝑠) = (ℤRHom‘𝑠)
3029zrhex 14458 . . . . . . . . . . 11 (𝑠 ∈ V → (ℤRHom‘𝑠) ∈ V)
3130elv 2777 . . . . . . . . . 10 (ℤRHom‘𝑠) ∈ V
3231resex 5009 . . . . . . . . 9 ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V
3332a1i 9 . . . . . . . 8 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V)
34 id 19 . . . . . . . . . . . 12 (𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) → 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))))
3528fveq2d 5593 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (ℤRHom‘𝑠) = (ℤRHom‘𝑈))
36 simpll 527 . . . . . . . . . . . . . . . . 17 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑛 = 𝑁)
3736eqeq1d 2215 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑛 = 0 ↔ 𝑁 = 0))
3836oveq2d 5973 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (0..^𝑛) = (0..^𝑁))
3937, 38ifbieq2d 3600 . . . . . . . . . . . . . . 15 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = if(𝑁 = 0, ℤ, (0..^𝑁)))
40 znval.w . . . . . . . . . . . . . . 15 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4139, 40eqtr4di 2257 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = 𝑊)
4235, 41reseq12d 4969 . . . . . . . . . . . . 13 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = ((ℤRHom‘𝑈) ↾ 𝑊))
43 znval.f . . . . . . . . . . . . 13 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
4442, 43eqtr4di 2257 . . . . . . . . . . . 12 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = 𝐹)
4534, 44sylan9eqr 2261 . . . . . . . . . . 11 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4645coeq1d 4847 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → (𝑓 ∘ ≤ ) = (𝐹 ∘ ≤ ))
4745cnveqd 4862 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4846, 47coeq12d 4850 . . . . . . . . 9 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = ((𝐹 ∘ ≤ ) ∘ 𝐹))
49 znval.l . . . . . . . . 9 = ((𝐹 ∘ ≤ ) ∘ 𝐹)
5048, 49eqtr4di 2257 . . . . . . . 8 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5133, 50csbied 3144 . . . . . . 7 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5251opeq2d 3832 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩ = ⟨(le‘ndx), ⟩)
5328, 52oveq12d 5975 . . . . 5 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
5415, 53csbied 3144 . . . 4 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
554, 54csbied 3144 . . 3 (𝑛 = 𝑁ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
56 id 19 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
57 rspex 14311 . . . . . . . . . 10 (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V)
583, 57ax-mp 5 . . . . . . . . 9 (RSpan‘ℤring) ∈ V
5919, 58eqeltri 2279 . . . . . . . 8 𝑆 ∈ V
60 snexg 4236 . . . . . . . 8 (𝑁 ∈ ℕ0 → {𝑁} ∈ V)
61 fvexg 5608 . . . . . . . 8 ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V)
6259, 60, 61sylancr 414 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V)
63 eqgex 13632 . . . . . . 7 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
643, 62, 63sylancr 414 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
65 qusex 13232 . . . . . 6 ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
663, 64, 65sylancr 414 . . . . 5 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
6726, 66eqeltrid 2293 . . . 4 (𝑁 ∈ ℕ0𝑈 ∈ V)
68 plendxnn 13110 . . . . 5 (le‘ndx) ∈ ℕ
6968a1i 9 . . . 4 (𝑁 ∈ ℕ0 → (le‘ndx) ∈ ℕ)
70 eqid 2206 . . . . . . . . . . 11 (ℤRHom‘𝑈) = (ℤRHom‘𝑈)
7170zrhex 14458 . . . . . . . . . 10 (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V)
7267, 71syl 14 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) ∈ V)
73 resexg 5008 . . . . . . . . 9 ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7472, 73syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7543, 74eqeltrid 2293 . . . . . . 7 (𝑁 ∈ ℕ0𝐹 ∈ V)
76 xrex 9998 . . . . . . . . 9 * ∈ V
7776, 76xpex 4798 . . . . . . . 8 (ℝ* × ℝ*) ∈ V
78 lerelxr 8155 . . . . . . . 8 ≤ ⊆ (ℝ* × ℝ*)
7977, 78ssexi 4190 . . . . . . 7 ≤ ∈ V
80 coexg 5236 . . . . . . 7 ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V)
8175, 79, 80sylancl 413 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V)
82 cnvexg 5229 . . . . . . 7 (𝐹 ∈ V → 𝐹 ∈ V)
8375, 82syl 14 . . . . . 6 (𝑁 ∈ ℕ0𝐹 ∈ V)
84 coexg 5236 . . . . . 6 (((𝐹 ∘ ≤ ) ∈ V ∧ 𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8581, 83, 84syl2anc 411 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8649, 85eqeltrid 2293 . . . 4 (𝑁 ∈ ℕ0 ∈ V)
87 setsex 12939 . . . 4 ((𝑈 ∈ V ∧ (le‘ndx) ∈ ℕ ∧ ∈ V) → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
8867, 69, 86, 87syl3anc 1250 . . 3 (𝑁 ∈ ℕ0 → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
892, 55, 56, 88fvmptd3 5686 . 2 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) = (𝑈 sSet ⟨(le‘ndx), ⟩))
901, 89eqtrid 2251 1 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  csb 3097  ifcif 3575  {csn 3638  cop 3641   × cxp 4681  ccnv 4682  cres 4685  ccom 4687  cfv 5280  (class class class)co 5957  0cc0 7945  *cxr 8126  cle 8128  cn 9056  0cn0 9315  cz 9392  ..^cfzo 10284  ndxcnx 12904   sSet csts 12905  lecple 12991   /s cqus 13207   ~QG cqg 13580  Ringcrg 13833  RSpancrsp 14305  ringczring 14427  ℤRHomczrh 14448  ℤ/nczn 14450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-ec 6635  df-map 6750  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-dec 9525  df-uz 9669  df-rp 9796  df-fz 10151  df-cj 11228  df-abs 11385  df-struct 12909  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-starv 12999  df-sca 13000  df-vsca 13001  df-ip 13002  df-tset 13003  df-ple 13004  df-ds 13006  df-unif 13007  df-0g 13165  df-topgen 13167  df-iimas 13209  df-qus 13210  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-subg 13581  df-eqg 13583  df-cmn 13697  df-mgp 13758  df-ur 13797  df-ring 13835  df-cring 13836  df-rhm 13989  df-subrg 14056  df-lsp 14224  df-sra 14272  df-rgmod 14273  df-rsp 14307  df-bl 14383  df-mopn 14384  df-fg 14386  df-metu 14387  df-cnfld 14394  df-zring 14428  df-zrh 14451  df-zn 14453
This theorem is referenced by:  znle  14474  znval2  14475  znbaslemnn  14476
  Copyright terms: Public domain W3C validator