ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znval GIF version

Theorem znval 14124
Description: The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s 𝑆 = (RSpan‘ℤring)
znval.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval.y 𝑌 = (ℤ/nℤ‘𝑁)
znval.f 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
znval.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znval.l = ((𝐹 ∘ ≤ ) ∘ 𝐹)
Assertion
Ref Expression
znval (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))

Proof of Theorem znval
Dummy variables 𝑓 𝑛 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znval.y . 2 𝑌 = (ℤ/nℤ‘𝑁)
2 df-zn 14104 . . 3 ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
3 zringring 14081 . . . . 5 ring ∈ Ring
43a1i 9 . . . 4 (𝑛 = 𝑁 → ℤring ∈ Ring)
5 vex 2763 . . . . . . 7 𝑧 ∈ V
6 rspex 13970 . . . . . . . . . 10 (𝑧 ∈ V → (RSpan‘𝑧) ∈ V)
76elv 2764 . . . . . . . . 9 (RSpan‘𝑧) ∈ V
8 vex 2763 . . . . . . . . . 10 𝑛 ∈ V
98snex 4214 . . . . . . . . 9 {𝑛} ∈ V
107, 9fvex 5574 . . . . . . . 8 ((RSpan‘𝑧)‘{𝑛}) ∈ V
11 eqgex 13291 . . . . . . . 8 ((𝑧 ∈ V ∧ ((RSpan‘𝑧)‘{𝑛}) ∈ V) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V)
125, 10, 11mp2an 426 . . . . . . 7 (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V
13 qusex 12908 . . . . . . 7 ((𝑧 ∈ V ∧ (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) ∈ V) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
145, 12, 13mp2an 426 . . . . . 6 (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V
1514a1i 9 . . . . 5 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) ∈ V)
16 id 19 . . . . . . 7 (𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) → 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))))
17 simpr 110 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑧 = ℤring)
1817fveq2d 5558 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = (RSpan‘ℤring))
19 znval.s . . . . . . . . . . . 12 𝑆 = (RSpan‘ℤring)
2018, 19eqtr4di 2244 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → (RSpan‘𝑧) = 𝑆)
21 simpl 109 . . . . . . . . . . . 12 ((𝑛 = 𝑁𝑧 = ℤring) → 𝑛 = 𝑁)
2221sneqd 3631 . . . . . . . . . . 11 ((𝑛 = 𝑁𝑧 = ℤring) → {𝑛} = {𝑁})
2320, 22fveq12d 5561 . . . . . . . . . 10 ((𝑛 = 𝑁𝑧 = ℤring) → ((RSpan‘𝑧)‘{𝑛}) = (𝑆‘{𝑁}))
2417, 23oveq12d 5936 . . . . . . . . 9 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})) = (ℤring ~QG (𝑆‘{𝑁})))
2517, 24oveq12d 5936 . . . . . . . 8 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))))
26 znval.u . . . . . . . 8 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
2725, 26eqtr4di 2244 . . . . . . 7 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) = 𝑈)
2816, 27sylan9eqr 2248 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑠 = 𝑈)
29 eqid 2193 . . . . . . . . . . . 12 (ℤRHom‘𝑠) = (ℤRHom‘𝑠)
3029zrhex 14109 . . . . . . . . . . 11 (𝑠 ∈ V → (ℤRHom‘𝑠) ∈ V)
3130elv 2764 . . . . . . . . . 10 (ℤRHom‘𝑠) ∈ V
3231resex 4983 . . . . . . . . 9 ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V
3332a1i 9 . . . . . . . 8 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) ∈ V)
34 id 19 . . . . . . . . . . . 12 (𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) → 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))))
3528fveq2d 5558 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (ℤRHom‘𝑠) = (ℤRHom‘𝑈))
36 simpll 527 . . . . . . . . . . . . . . . . 17 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → 𝑛 = 𝑁)
3736eqeq1d 2202 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑛 = 0 ↔ 𝑁 = 0))
3836oveq2d 5934 . . . . . . . . . . . . . . . 16 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (0..^𝑛) = (0..^𝑁))
3937, 38ifbieq2d 3581 . . . . . . . . . . . . . . 15 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = if(𝑁 = 0, ℤ, (0..^𝑁)))
40 znval.w . . . . . . . . . . . . . . 15 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4139, 40eqtr4di 2244 . . . . . . . . . . . . . 14 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → if(𝑛 = 0, ℤ, (0..^𝑛)) = 𝑊)
4235, 41reseq12d 4943 . . . . . . . . . . . . 13 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = ((ℤRHom‘𝑈) ↾ 𝑊))
43 znval.f . . . . . . . . . . . . 13 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)
4442, 43eqtr4di 2244 . . . . . . . . . . . 12 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) = 𝐹)
4534, 44sylan9eqr 2248 . . . . . . . . . . 11 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4645coeq1d 4823 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → (𝑓 ∘ ≤ ) = (𝐹 ∘ ≤ ))
4745cnveqd 4838 . . . . . . . . . 10 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → 𝑓 = 𝐹)
4846, 47coeq12d 4826 . . . . . . . . 9 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = ((𝐹 ∘ ≤ ) ∘ 𝐹))
49 znval.l . . . . . . . . 9 = ((𝐹 ∘ ≤ ) ∘ 𝐹)
5048, 49eqtr4di 2244 . . . . . . . 8 ((((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) ∧ 𝑓 = ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛)))) → ((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5133, 50csbied 3127 . . . . . . 7 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓) = )
5251opeq2d 3811 . . . . . 6 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩ = ⟨(le‘ndx), ⟩)
5328, 52oveq12d 5936 . . . . 5 (((𝑛 = 𝑁𝑧 = ℤring) ∧ 𝑠 = (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛})))) → (𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
5415, 53csbied 3127 . . . 4 ((𝑛 = 𝑁𝑧 = ℤring) → (𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
554, 54csbied 3127 . . 3 (𝑛 = 𝑁ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩) = (𝑈 sSet ⟨(le‘ndx), ⟩))
56 id 19 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
57 rspex 13970 . . . . . . . . . 10 (ℤring ∈ Ring → (RSpan‘ℤring) ∈ V)
583, 57ax-mp 5 . . . . . . . . 9 (RSpan‘ℤring) ∈ V
5919, 58eqeltri 2266 . . . . . . . 8 𝑆 ∈ V
60 snexg 4213 . . . . . . . 8 (𝑁 ∈ ℕ0 → {𝑁} ∈ V)
61 fvexg 5573 . . . . . . . 8 ((𝑆 ∈ V ∧ {𝑁} ∈ V) → (𝑆‘{𝑁}) ∈ V)
6259, 60, 61sylancr 414 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ V)
63 eqgex 13291 . . . . . . 7 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ V) → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
643, 62, 63sylancr 414 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤring ~QG (𝑆‘{𝑁})) ∈ V)
65 qusex 12908 . . . . . 6 ((ℤring ∈ Ring ∧ (ℤring ~QG (𝑆‘{𝑁})) ∈ V) → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
663, 64, 65sylancr 414 . . . . 5 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ∈ V)
6726, 66eqeltrid 2280 . . . 4 (𝑁 ∈ ℕ0𝑈 ∈ V)
68 plendxnn 12820 . . . . 5 (le‘ndx) ∈ ℕ
6968a1i 9 . . . 4 (𝑁 ∈ ℕ0 → (le‘ndx) ∈ ℕ)
70 eqid 2193 . . . . . . . . . . 11 (ℤRHom‘𝑈) = (ℤRHom‘𝑈)
7170zrhex 14109 . . . . . . . . . 10 (𝑈 ∈ V → (ℤRHom‘𝑈) ∈ V)
7267, 71syl 14 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) ∈ V)
73 resexg 4982 . . . . . . . . 9 ((ℤRHom‘𝑈) ∈ V → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7472, 73syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑈) ↾ 𝑊) ∈ V)
7543, 74eqeltrid 2280 . . . . . . 7 (𝑁 ∈ ℕ0𝐹 ∈ V)
76 xrex 9922 . . . . . . . . 9 * ∈ V
7776, 76xpex 4774 . . . . . . . 8 (ℝ* × ℝ*) ∈ V
78 lerelxr 8082 . . . . . . . 8 ≤ ⊆ (ℝ* × ℝ*)
7977, 78ssexi 4167 . . . . . . 7 ≤ ∈ V
80 coexg 5210 . . . . . . 7 ((𝐹 ∈ V ∧ ≤ ∈ V) → (𝐹 ∘ ≤ ) ∈ V)
8175, 79, 80sylancl 413 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐹 ∘ ≤ ) ∈ V)
82 cnvexg 5203 . . . . . . 7 (𝐹 ∈ V → 𝐹 ∈ V)
8375, 82syl 14 . . . . . 6 (𝑁 ∈ ℕ0𝐹 ∈ V)
84 coexg 5210 . . . . . 6 (((𝐹 ∘ ≤ ) ∈ V ∧ 𝐹 ∈ V) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8581, 83, 84syl2anc 411 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ∈ V)
8649, 85eqeltrid 2280 . . . 4 (𝑁 ∈ ℕ0 ∈ V)
87 setsex 12650 . . . 4 ((𝑈 ∈ V ∧ (le‘ndx) ∈ ℕ ∧ ∈ V) → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
8867, 69, 86, 87syl3anc 1249 . . 3 (𝑁 ∈ ℕ0 → (𝑈 sSet ⟨(le‘ndx), ⟩) ∈ V)
892, 55, 56, 88fvmptd3 5651 . 2 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) = (𝑈 sSet ⟨(le‘ndx), ⟩))
901, 89eqtrid 2238 1 (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  csb 3080  ifcif 3557  {csn 3618  cop 3621   × cxp 4657  ccnv 4658  cres 4661  ccom 4663  cfv 5254  (class class class)co 5918  0cc0 7872  *cxr 8053  cle 8055  cn 8982  0cn0 9240  cz 9317  ..^cfzo 10208  ndxcnx 12615   sSet csts 12616  lecple 12702   /s cqus 12883   ~QG cqg 13239  Ringcrg 13492  RSpancrsp 13964  ringczring 14078  ℤRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-ec 6589  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-eqg 13242  df-cmn 13356  df-mgp 13417  df-ur 13456  df-ring 13494  df-cring 13495  df-rhm 13648  df-subrg 13715  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-rsp 13966  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  znle  14125  znval2  14126  znbaslemnn  14127
  Copyright terms: Public domain W3C validator