| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvconst2g | GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 5457 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 5753 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3623 × cxp 4662 ⟶wf 5255 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 |
| This theorem is referenced by: fconst2g 5780 fvconst2 5781 ofc1g 6161 ofc2g 6162 caofid0l 6166 caofid0r 6167 caofid1 6168 caofid2 6169 ser0 10644 exp3vallem 10651 exp3val 10652 exp1 10656 expp1 10657 resqrexlem1arp 11189 resqrexlemf1 11192 climconst2 11475 climaddc1 11513 climmulc2 11515 climsubc1 11516 climsubc2 11517 climlec2 11525 prodf1 11726 prod0 11769 ialgrlemconst 12238 ialgr0 12239 algrf 12240 algrp1 12241 pwsbas 12996 pwsplusgval 12999 pwsmulrval 13000 0mhm 13190 pwsinvg 13316 mulgval 13330 mulgfng 13332 mulgnngsum 13335 mulg1 13337 mulgnnp1 13338 mulgnnsubcl 13342 mulgnn0z 13357 mulgnndir 13359 lmconst 14538 cnconst2 14555 dvidlemap 15013 dvidrelem 15014 dvidsslem 15015 dvconst 15016 dvconstre 15018 dvconstss 15020 dvef 15049 |
| Copyright terms: Public domain | W3C validator |