ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2g GIF version

Theorem fvconst2g 5773
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.)
Assertion
Ref Expression
fvconst2g ((𝐵𝐷𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)

Proof of Theorem fvconst2g
StepHypRef Expression
1 fconstg 5451 . 2 (𝐵𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
2 fvconst 5747 . 2 (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
31, 2sylan 283 1 ((𝐵𝐷𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {csn 3619   × cxp 4658  wf 5251  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  fconst2g  5774  fvconst2  5775  ofc1g  6153  ofc2g  6154  ser0  10607  exp3vallem  10614  exp3val  10615  exp1  10619  expp1  10620  resqrexlem1arp  11152  resqrexlemf1  11155  climconst2  11437  climaddc1  11475  climmulc2  11477  climsubc1  11478  climsubc2  11479  climlec2  11487  prodf1  11688  prod0  11731  ialgrlemconst  12184  ialgr0  12185  algrf  12186  algrp1  12187  0mhm  13061  mulgval  13195  mulgfng  13197  mulgnngsum  13200  mulg1  13202  mulgnnp1  13203  mulgnnsubcl  13207  mulgnn0z  13222  mulgnndir  13224  lmconst  14395  cnconst2  14412  dvidlemap  14870  dvidrelem  14871  dvidsslem  14872  dvconst  14873  dvconstre  14875  dvconstss  14877  dvef  14906
  Copyright terms: Public domain W3C validator