| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvconst2g | GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 5524 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 5831 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {csn 3666 × cxp 4717 ⟶wf 5314 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: fconst2g 5858 fvconst2 5859 ofc1g 6246 ofc2g 6247 caofid0l 6251 caofid0r 6252 caofid1 6253 caofid2 6254 ser0 10763 exp3vallem 10770 exp3val 10771 exp1 10775 expp1 10776 resqrexlem1arp 11524 resqrexlemf1 11527 climconst2 11810 climaddc1 11848 climmulc2 11850 climsubc1 11851 climsubc2 11852 climlec2 11860 prodf1 12061 prod0 12104 ialgrlemconst 12573 ialgr0 12574 algrf 12575 algrp1 12576 pwsbas 13333 pwsplusgval 13336 pwsmulrval 13337 0mhm 13527 pwsinvg 13653 mulgval 13667 mulgfng 13669 mulgnngsum 13672 mulg1 13674 mulgnnp1 13675 mulgnnsubcl 13679 mulgnn0z 13694 mulgnndir 13696 mplsubgfilemm 14670 lmconst 14898 cnconst2 14915 dvidlemap 15373 dvidrelem 15374 dvidsslem 15375 dvconst 15376 dvconstre 15378 dvconstss 15380 dvef 15409 |
| Copyright terms: Public domain | W3C validator |