| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvconst2g | GIF version | ||
| Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.) |
| Ref | Expression |
|---|---|
| fvconst2g | ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstg 5498 | . 2 ⊢ (𝐵 ∈ 𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
| 2 | fvconst 5800 | . 2 ⊢ (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
| 3 | 1, 2 | sylan 283 | 1 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 {csn 3646 × cxp 4694 ⟶wf 5290 ‘cfv 5294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 |
| This theorem is referenced by: fconst2g 5827 fvconst2 5828 ofc1g 6210 ofc2g 6211 caofid0l 6215 caofid0r 6216 caofid1 6217 caofid2 6218 ser0 10722 exp3vallem 10729 exp3val 10730 exp1 10734 expp1 10735 resqrexlem1arp 11482 resqrexlemf1 11485 climconst2 11768 climaddc1 11806 climmulc2 11808 climsubc1 11809 climsubc2 11810 climlec2 11818 prodf1 12019 prod0 12062 ialgrlemconst 12531 ialgr0 12532 algrf 12533 algrp1 12534 pwsbas 13291 pwsplusgval 13294 pwsmulrval 13295 0mhm 13485 pwsinvg 13611 mulgval 13625 mulgfng 13627 mulgnngsum 13630 mulg1 13632 mulgnnp1 13633 mulgnnsubcl 13637 mulgnn0z 13652 mulgnndir 13654 mplsubgfilemm 14627 lmconst 14855 cnconst2 14872 dvidlemap 15330 dvidrelem 15331 dvidsslem 15332 dvconst 15333 dvconstre 15335 dvconstss 15337 dvef 15366 |
| Copyright terms: Public domain | W3C validator |