ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2g GIF version

Theorem fvconst2g 5776
Description: The value of a constant function. (Contributed by NM, 20-Aug-2005.)
Assertion
Ref Expression
fvconst2g ((𝐵𝐷𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)

Proof of Theorem fvconst2g
StepHypRef Expression
1 fconstg 5454 . 2 (𝐵𝐷 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
2 fvconst 5750 . 2 (((𝐴 × {𝐵}):𝐴⟶{𝐵} ∧ 𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
31, 2sylan 283 1 ((𝐵𝐷𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3622   × cxp 4661  wf 5254  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  fconst2g  5777  fvconst2  5778  ofc1g  6156  ofc2g  6157  ser0  10625  exp3vallem  10632  exp3val  10633  exp1  10637  expp1  10638  resqrexlem1arp  11170  resqrexlemf1  11173  climconst2  11456  climaddc1  11494  climmulc2  11496  climsubc1  11497  climsubc2  11498  climlec2  11506  prodf1  11707  prod0  11750  ialgrlemconst  12211  ialgr0  12212  algrf  12213  algrp1  12214  0mhm  13118  mulgval  13252  mulgfng  13254  mulgnngsum  13257  mulg1  13259  mulgnnp1  13260  mulgnnsubcl  13264  mulgnn0z  13279  mulgnndir  13281  lmconst  14452  cnconst2  14469  dvidlemap  14927  dvidrelem  14928  dvidsslem  14929  dvconst  14930  dvconstre  14932  dvconstss  14934  dvef  14963
  Copyright terms: Public domain W3C validator