ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgr0 GIF version

Theorem ialgr0 12079
Description: The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
ialgr0 (𝜑 → (𝑅𝑀) = 𝐴)

Proof of Theorem ialgr0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
21fveq1i 5535 . 2 (𝑅𝑀) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀)
3 algrf.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 algrf.1 . . . . 5 𝑍 = (ℤ𝑀)
5 algrf.4 . . . . 5 (𝜑𝐴𝑆)
64, 5ialgrlemconst 12078 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
7 algrf.5 . . . . 5 (𝜑𝐹:𝑆𝑆)
87ialgrlem1st 12077 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
93, 6, 8seq3-1 10493 . . 3 (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
10 uzid 9573 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
113, 10syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
1211, 4eleqtrrdi 2283 . . . 4 (𝜑𝑀𝑍)
13 fvconst2g 5751 . . . 4 ((𝐴𝑆𝑀𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
145, 12, 13syl2anc 411 . . 3 (𝜑 → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
159, 14eqtrd 2222 . 2 (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = 𝐴)
162, 15eqtrid 2234 1 (𝜑 → (𝑅𝑀) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  {csn 3607   × cxp 4642  ccom 4648  wf 5231  cfv 5235  1st c1st 6164  cz 9284  cuz 9559  seqcseq 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285  df-uz 9560  df-seqfrec 10479
This theorem is referenced by:  algcvg  12083  eucalg  12094
  Copyright terms: Public domain W3C validator