| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ialgr0 | GIF version | ||
| Description: The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
| Ref | Expression |
|---|---|
| algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
| algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| ialgr0 | ⊢ (𝜑 → (𝑅‘𝑀) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.2 | . . 3 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
| 2 | 1 | fveq1i 5590 | . 2 ⊢ (𝑅‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) |
| 3 | algrf.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | algrf.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | algrf.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 6 | 4, 5 | ialgrlemconst 12440 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| 7 | algrf.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 8 | 7 | ialgrlem1st 12439 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| 9 | 3, 6, 8 | seq3-1 10629 | . . 3 ⊢ (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀)) |
| 10 | uzid 9682 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 11 | 3, 10 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 12 | 11, 4 | eleqtrrdi 2300 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 13 | fvconst2g 5811 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑀 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴) | |
| 14 | 5, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑍 × {𝐴})‘𝑀) = 𝐴) |
| 15 | 9, 14 | eqtrd 2239 | . 2 ⊢ (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = 𝐴) |
| 16 | 2, 15 | eqtrid 2251 | 1 ⊢ (𝜑 → (𝑅‘𝑀) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {csn 3638 × cxp 4681 ∘ ccom 4687 ⟶wf 5276 ‘cfv 5280 1st c1st 6237 ℤcz 9392 ℤ≥cuz 9668 seqcseq 10614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-seqfrec 10615 |
| This theorem is referenced by: algcvg 12445 eucalg 12456 |
| Copyright terms: Public domain | W3C validator |