| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ialgr0 | GIF version | ||
| Description: The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.) |
| Ref | Expression |
|---|---|
| algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
| algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
| Ref | Expression |
|---|---|
| ialgr0 | ⊢ (𝜑 → (𝑅‘𝑀) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.2 | . . 3 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
| 2 | 1 | fveq1i 5571 | . 2 ⊢ (𝑅‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) |
| 3 | algrf.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | algrf.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | algrf.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 6 | 4, 5 | ialgrlemconst 12284 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
| 7 | algrf.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
| 8 | 7 | ialgrlem1st 12283 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
| 9 | 3, 6, 8 | seq3-1 10588 | . . 3 ⊢ (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀)) |
| 10 | uzid 9644 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 11 | 3, 10 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 12 | 11, 4 | eleqtrrdi 2298 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 13 | fvconst2g 5788 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑀 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴) | |
| 14 | 5, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑍 × {𝐴})‘𝑀) = 𝐴) |
| 15 | 9, 14 | eqtrd 2237 | . 2 ⊢ (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = 𝐴) |
| 16 | 2, 15 | eqtrid 2249 | 1 ⊢ (𝜑 → (𝑅‘𝑀) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 {csn 3632 × cxp 4671 ∘ ccom 4677 ⟶wf 5264 ‘cfv 5268 1st c1st 6214 ℤcz 9354 ℤ≥cuz 9630 seqcseq 10573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-seqfrec 10574 |
| This theorem is referenced by: algcvg 12289 eucalg 12300 |
| Copyright terms: Public domain | W3C validator |