ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgr0 GIF version

Theorem ialgr0 12011
Description: The value of the algorithm iterator 𝑅 at 0 is the initial state 𝐴. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Jim Kingdon, 12-Mar-2023.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
ialgr0 (𝜑 → (𝑅𝑀) = 𝐴)

Proof of Theorem ialgr0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
21fveq1i 5508 . 2 (𝑅𝑀) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀)
3 algrf.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 algrf.1 . . . . 5 𝑍 = (ℤ𝑀)
5 algrf.4 . . . . 5 (𝜑𝐴𝑆)
64, 5ialgrlemconst 12010 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
7 algrf.5 . . . . 5 (𝜑𝐹:𝑆𝑆)
87ialgrlem1st 12009 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
93, 6, 8seq3-1 10430 . . 3 (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
10 uzid 9515 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
113, 10syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
1211, 4eleqtrrdi 2269 . . . 4 (𝜑𝑀𝑍)
13 fvconst2g 5722 . . . 4 ((𝐴𝑆𝑀𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
145, 12, 13syl2anc 411 . . 3 (𝜑 → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
159, 14eqtrd 2208 . 2 (𝜑 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = 𝐴)
162, 15eqtrid 2220 1 (𝜑 → (𝑅𝑀) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  {csn 3589   × cxp 4618  ccom 4624  wf 5204  cfv 5208  1st c1st 6129  cz 9226  cuz 9501  seqcseq 10415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227  df-uz 9502  df-seqfrec 10416
This theorem is referenced by:  algcvg  12015  eucalg  12026
  Copyright terms: Public domain W3C validator