| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0z | GIF version | ||
| Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0z | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9367 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | id 19 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
| 3 | mulgnn0z.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 5 | 3, 4 | mndidcl 13458 | . . . . 5 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 6 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | mulgnn0z.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 8 | eqid 2229 | . . . . . 6 ⊢ seq1((+g‘𝐺), (ℕ × { 0 })) = seq1((+g‘𝐺), (ℕ × { 0 })) | |
| 9 | 3, 6, 7, 8 | mulgnn 13658 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 0 ∈ 𝐵) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 10 | 2, 5, 9 | syl2anr 290 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 11 | 3, 6, 4 | mndlid 13463 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 12 | 5, 11 | mpdan 421 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 14 | simpr 110 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 15 | nnuz 9754 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 14, 15 | eleqtrdi 2322 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ≥‘1)) |
| 17 | 5 | adantr 276 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0 ∈ 𝐵) |
| 18 | elfznn 10246 | . . . . . 6 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
| 19 | fvconst2g 5852 | . . . . . 6 ⊢ (( 0 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 ) | |
| 20 | 17, 18, 19 | syl2an 289 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 ) |
| 21 | 15, 17 | ialgrlemconst 12560 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × { 0 })‘𝑥) ∈ 𝐵) |
| 22 | 3, 6 | mndcl 13451 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 23 | 22 | 3expb 1228 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 24 | 23 | adantlr 477 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 25 | 13, 16, 20, 17, 21, 24 | seq3id3 10741 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁) = 0 ) |
| 26 | 10, 25 | eqtrd 2262 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 ) |
| 27 | oveq1 6007 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 )) | |
| 28 | 3, 4, 7 | mulg0 13657 | . . . . 5 ⊢ ( 0 ∈ 𝐵 → (0 · 0 ) = 0 ) |
| 29 | 5, 28 | syl 14 | . . . 4 ⊢ (𝐺 ∈ Mnd → (0 · 0 ) = 0 ) |
| 30 | 27, 29 | sylan9eqr 2284 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 ) |
| 31 | 26, 30 | jaodan 802 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 ) |
| 32 | 1, 31 | sylan2b 287 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {csn 3666 × cxp 4716 ‘cfv 5317 (class class class)co 6000 0cc0 7995 1c1 7996 ℕcn 9106 ℕ0cn0 9365 ℤ≥cuz 9718 ...cfz 10200 seqcseq 10664 Basecbs 13027 +gcplusg 13105 0gc0g 13284 Mndcmnd 13444 .gcmg 13651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-minusg 13532 df-mulg 13652 |
| This theorem is referenced by: mulgz 13682 mulgnn0ass 13690 srg1expzeq1 13953 |
| Copyright terms: Public domain | W3C validator |