Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgnn0z | GIF version |
Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnn0z.t | ⊢ · = (.g‘𝐺) |
mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mulgnn0z | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9146 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | id 19 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
3 | mulgnn0z.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | mulgnn0z.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
5 | 3, 4 | mndidcl 12693 | . . . . 5 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
6 | eqid 2173 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | mulgnn0z.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
8 | eqid 2173 | . . . . . 6 ⊢ seq1((+g‘𝐺), (ℕ × { 0 })) = seq1((+g‘𝐺), (ℕ × { 0 })) | |
9 | 3, 6, 7, 8 | mulgnn 12845 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 0 ∈ 𝐵) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
10 | 2, 5, 9 | syl2anr 290 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
11 | 3, 6, 4 | mndlid 12698 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
12 | 5, 11 | mpdan 421 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
14 | simpr 110 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
15 | nnuz 9531 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
16 | 14, 15 | eleqtrdi 2266 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ≥‘1)) |
17 | 5 | adantr 276 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0 ∈ 𝐵) |
18 | elfznn 10019 | . . . . . 6 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
19 | fvconst2g 5719 | . . . . . 6 ⊢ (( 0 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 ) | |
20 | 17, 18, 19 | syl2an 289 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 ) |
21 | 15, 17 | ialgrlemconst 12006 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ≥‘1)) → ((ℕ × { 0 })‘𝑥) ∈ 𝐵) |
22 | 3, 6 | mndcl 12686 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
23 | 22 | 3expb 1202 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
24 | 23 | adantlr 477 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
25 | 13, 16, 20, 17, 21, 24 | seq3id3 10472 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁) = 0 ) |
26 | 10, 25 | eqtrd 2206 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 ) |
27 | oveq1 5869 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 )) | |
28 | 3, 4, 7 | mulg0 12844 | . . . . 5 ⊢ ( 0 ∈ 𝐵 → (0 · 0 ) = 0 ) |
29 | 5, 28 | syl 14 | . . . 4 ⊢ (𝐺 ∈ Mnd → (0 · 0 ) = 0 ) |
30 | 27, 29 | sylan9eqr 2228 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 ) |
31 | 26, 30 | jaodan 795 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 ) |
32 | 1, 31 | sylan2b 287 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 706 = wceq 1351 ∈ wcel 2144 {csn 3586 × cxp 4615 ‘cfv 5205 (class class class)co 5862 0cc0 7783 1c1 7784 ℕcn 8887 ℕ0cn0 9144 ℤ≥cuz 9496 ...cfz 9974 seqcseq 10410 Basecbs 12425 +gcplusg 12489 0gc0g 12623 Mndcmnd 12679 .gcmg 12839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-nul 4121 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-iinf 4578 ax-cnex 7874 ax-resscn 7875 ax-1cn 7876 ax-1re 7877 ax-icn 7878 ax-addcl 7879 ax-addrcl 7880 ax-mulcl 7881 ax-addcom 7883 ax-addass 7885 ax-distr 7887 ax-i2m1 7888 ax-0lt1 7889 ax-0id 7891 ax-rnegex 7892 ax-cnre 7894 ax-pre-ltirr 7895 ax-pre-ltwlin 7896 ax-pre-lttrn 7897 ax-pre-ltadd 7899 |
This theorem depends on definitions: df-bi 117 df-dc 833 df-3or 977 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-nel 2439 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-nul 3418 df-if 3530 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-tr 4094 df-id 4284 df-iord 4357 df-on 4359 df-ilim 4360 df-suc 4362 df-iom 4581 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-recs 6293 df-frec 6379 df-pnf 7965 df-mnf 7966 df-xr 7967 df-ltxr 7968 df-le 7969 df-sub 8101 df-neg 8102 df-inn 8888 df-2 8946 df-n0 9145 df-z 9222 df-uz 9497 df-fz 9975 df-fzo 10108 df-seqfrec 10411 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-minusg 12739 df-mulg 12840 |
This theorem is referenced by: mulgz 12866 mulgnn0ass 12874 |
Copyright terms: Public domain | W3C validator |