ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0z GIF version

Theorem mulgnn0z 13681
Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b 𝐵 = (Base‘𝐺)
mulgnn0z.t · = (.g𝐺)
mulgnn0z.o 0 = (0g𝐺)
Assertion
Ref Expression
mulgnn0z ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )

Proof of Theorem mulgnn0z
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9367 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 id 19 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
3 mulgnn0z.b . . . . . 6 𝐵 = (Base‘𝐺)
4 mulgnn0z.o . . . . . 6 0 = (0g𝐺)
53, 4mndidcl 13458 . . . . 5 (𝐺 ∈ Mnd → 0𝐵)
6 eqid 2229 . . . . . 6 (+g𝐺) = (+g𝐺)
7 mulgnn0z.t . . . . . 6 · = (.g𝐺)
8 eqid 2229 . . . . . 6 seq1((+g𝐺), (ℕ × { 0 })) = seq1((+g𝐺), (ℕ × { 0 }))
93, 6, 7, 8mulgnn 13658 . . . . 5 ((𝑁 ∈ ℕ ∧ 0𝐵) → (𝑁 · 0 ) = (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁))
102, 5, 9syl2anr 290 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁))
113, 6, 4mndlid 13463 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0𝐵) → ( 0 (+g𝐺) 0 ) = 0 )
125, 11mpdan 421 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
1312adantr 276 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g𝐺) 0 ) = 0 )
14 simpr 110 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
15 nnuz 9754 . . . . . 6 ℕ = (ℤ‘1)
1614, 15eleqtrdi 2322 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
175adantr 276 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0𝐵)
18 elfznn 10246 . . . . . 6 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
19 fvconst2g 5852 . . . . . 6 (( 0𝐵𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 )
2017, 18, 19syl2an 289 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 )
2115, 17ialgrlemconst 12560 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × { 0 })‘𝑥) ∈ 𝐵)
223, 6mndcl 13451 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
23223expb 1228 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2423adantlr 477 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2513, 16, 20, 17, 21, 24seq3id3 10741 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁) = 0 )
2610, 25eqtrd 2262 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 )
27 oveq1 6007 . . . 4 (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 ))
283, 4, 7mulg0 13657 . . . . 5 ( 0𝐵 → (0 · 0 ) = 0 )
295, 28syl 14 . . . 4 (𝐺 ∈ Mnd → (0 · 0 ) = 0 )
3027, 29sylan9eqr 2284 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 )
3126, 30jaodan 802 . 2 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 )
321, 31sylan2b 287 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  {csn 3666   × cxp 4716  cfv 5317  (class class class)co 6000  0cc0 7995  1c1 7996  cn 9106  0cn0 9365  cuz 9718  ...cfz 10200  seqcseq 10664  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Mndcmnd 13444  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulgz  13682  mulgnn0ass  13690  srg1expzeq1  13953
  Copyright terms: Public domain W3C validator